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We derive and discuss three different parametrizations of the generator of a dynamical semigroup which 
describes the Markovian relaxation of a spin j under the influence of isotropic surroundings. The relevant 
parametrizations that we consider are the strengths of the polarities of the interaction, the relaxation rates 
of the different mUltipoles and the transition probabilities per unit time among the Zeeman sublevels. The 
results are model independent and allow us to derive a set of relations and inequalities for the transition 
probabilities and for the relaxation rates whose validity is not bound to any specific assumption concerning 
the mechanisms which govern the relaxation. 

1. INTRODUCTION 

Quantum dynamical semigroups1-3 with various de­
grees of symmetry are widely used in the phenomeno­
logical description of optical pumping of atoms and 
molecules. 4,5 In this paper we discuss three phySically 
meaningful parametrizations of the generator L of a 
dynamical semigroup of an N-level quantum system S, 
under the assumption of invariance of L under the ir­
reducible representation Di [j = (N - 1)/2] of the three­
dimensional rotation group SO(3). From the phYSical 
point of view, the system S can be thought of as repre­
senting a Single spin j which evolves irreversibly in a 
Markovian fashion under the influence of isotropic sur­
roundings, according to the equation 

d 
dt p(t) "" Lp(t) (1. 1) 

for the denSity matrix p(t) which describes the state of 
the system. One of the best known examples of a situa­
tion of this kind is provided by the relaxation, in a weak 
external magnetic field, among the Zeeman sublevels 
of the electronic spin of the ground state (or of some 
excited state) of the atoms of an optically pumped atom­
ic vapor, when the atoms have zero nuclear spin. 4 

It is generally argued that the external mechanisms 
which are responsible for the relaxation are such as 
to justify the Markovian approximation (1. 1) to the gen­
eralized master equation which gives in principle an 
exact description of the subdynamics of the spin. 4,6-8 

Then, the isotropy assumption is a good approximation 
whenever the temperature of the vapor is high enough 
and the external field is sufficiently weak that the en­
ergy difference among the different levels is much 
smaller than kT so that, at thermal equilibrium, the 
Zeeman levels are almost uniformly populated. 
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Even though our results are to a large extent known, 9-12 
they have been derived so far only within the context of 
specific phenomenological models for the mechanisms 
governing the relaxation. On the other hand, our treat­
ment, which is based on the theory of dynamical semi­
groups, has the advantage of providing a unified and 
simple proof of the results, which is generally valid, 
granted the assumptions of Markovicity and isotropy, 
independently of any particular model for the interaction. 

In Sec. 2 we give the general form of the generator 
L of a dynamical semigroup for a spin j, under the 
assumption of spatial isotropy, as a function of the dif­
ferent strengths AJ (J = 1, 2, ... , 2j) of the interaction 
polarities. F rom this, we derive a set of inequalities 
which have to be satisfied by the relaxation rates YJ of 
the different multipoles. Furthermore, we show that' in 
the special case under consideration positivity and com­
plete positivity13,14 are equivalent. 

In Sec. 3 we consider the parametrization of L in 
terms of the transition probabilities per unit time W mm' 

among the Zeeman sublevels and we derive the con­
straints imposed upon the W mm' by their relations with 
the parametrizations Y J and /...". 

2. THE PARAMETRIZATIONS AJ AND IJ 

We recall that a dynamical senzigroup of an N-level 
system is a one-parameter continuous semigroup t - At 
"" exp(Ll), t? 0, of completely positive13 ,14 trace pre­
serving linear maps on the algebra M(N) of the NXN 
complex matrices. Complete positivity, which is a 
stronger property than positivity, has been recognized 
to be a general feature of the dynamics of quantum open 
systems. 15,1_3 

It was shown in Ref. 1 (see also Ref. 2) that a linear 
operator L : M(N) - M(N) is the generator of a dynamical 
semigroup iff it has the form 

L : p - Lp "" - i[H, p] 
N 2_1 

PEM(N), 

+t E cu {[F j ,pF1]+[Fj p, FtJ}, 
i .i=l 

(2.1) 

1803 J. Math, Phys. 19(9), September 1978 0022-2488/78/1909-1803$1.00 © 1978 American Institute of Physics 1803 



                                                                                                                                    

where 

H =H*, tr(H) = 0, (2.1a) 

tr(Fj)=O, tr(FtFi)=Oji (i,j=I,2, ... ,N2 _1), 

(2.1b) 

{e1J} is a complex positive matrix. (2.1c) 

For a given L, H is uniquely determined by the condition 
tr(H) = ° and {Cii} is uniquely determined by the choice 
of the Fl's. 

A straightforward consequence of Theorem 5 of Ref. 
16 is that the linear operator L : M(N) - M(N) is the 
generator of a one-parameter continuous semigroup of 
positive trace preserving linear maps on M(N) iff it is 
of the form (2.1), where Hand {F j}1=1 2 •••• • N2_1 satisfy 
(2.1a) and (2.1b) above and where {CIJ} is a self-adjoint 
matrix with the property that 

N2.1 

~ (xIFiIY)Cji(xIFily):;"o (2.1c') 
!.i =1 

for all pairs of orthogonal vectors I x) and I y) in ([N. 

Denote by {ljm)} (j=(N-l)/2, m=j,j-l, ... , -j) the 
standard spin baSiS, i. e., Jaljm) = m Ijm), and by 
IY :R-Di(R), RE80(3), the standard form of the ir­
reducible representation of 80(3) acting on ([2J+t, namely 
DJ(R) = exp(- iOlJa) exp(- i{3J2) exp(- iyJ3 ), where 01, {3, Y 
are the Euler angles which define the rotation R. 17 

Let {TIM} (J =0,1, ..• , 2j; M=J, J - 1, ... , - J) denote 
the orthonormal basis [w. r. t. the Hilbert-Schmidt 
product (A I B) = tdA * B)] in M(N) of the irreducible 
spherical tensors, 

I 

Di(R) TIMrY (R)* = 0 D~'M(R)TIM" 
M'=.I 

(jml TIM Ijm') = (_)J.m";2J+ l(j j J) 

\m-m' -M ' 

where the phase conventions are those of Ref. 17, 
Appendix B. 

(2.2) 

(2.3) 

We say that a dynamical semigroup on M(2j + 1), At 
= exp(Lt), is invariant under Di if 

L(rY (R)pDi (R)*) =Di (R)(Lp)Di (R)*, 

VRESO(3) and VpEM(2j+ 1). (2.4) 

Proposition 2.1: The general form of the generator 
L of a dynamical semigroup ~ on M(2i + 1) which is 
invariant under DJ is 

2J I 

L:p-Lp=-t0 ftv 0 [Th,[TJM,P]), (2.5) 
/=1 M=-I 

p EM(2j + 1), 

where 

AJ "" ° (J = 1, 2, •.• , 2i). (2.6) 

Proof: Choosing for the set {F j } in Eq. (2.1) the 
traceless tensors T JM, J=I, 2, ... , 2i, M=J,J-l, .•. , 
-J, we have 

L :p-Lp=-i[H,p] 
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(2.7) 

From (2.4), (2.2) and the uniqueness of the decompo­
sition (2.7) we get 

[H,rY(R)]=O, V RESO(3), 

and 
, I' 

cf,~: = ~ f) D~o (R) c~g: D';,o' (R), V R E SO(3). 
o =-T 0 '=-T' 

Hence, from the irreducibility of rY it follows that H = ° 
and that c~~; =A, 0U.OMM', where, by (2.1c), AJ :;" O. 
Then (2.5) follows from the property r-'M=(_)MT,_M' 

QED 

Regarding the physical meaning of the parameters 
AI, if we think for instance of the semigroup At as ob­
tained in the limit of white noise E: - 0, when the effect 
of the surroundings on the spin is represented by an 
isotropic stationary Gaussian fluctuating Hamitonian 
ii(T) = LJ MT 1M VI M(t), (V, M(t)VJ• M'(S» 
= AJ o/J,OMM,(I/E:v'rr) exp[ - (t - S)2/E2], 18 we see that the 
parameter AI characterizes the strength of the (2)' -pole 
component of the interaction. An anologous conclusion 
would hold in a weak coupling model. 19.20 

If the semigroup At of Proposition 2. 1 is required to 
be positive (instead of completely positive), then, by 
(2.1c'), its generator L still has the form (2.5) with 
the coefficients AJ satisfying 

(2.8) 

for all orthogonal vectors I x) and Iy) in a:;2i+1. Choosing 

and 

Ix) = lij) 

K 

ly(K»= B OI I
CK )li, -i+Z), K=O, 1, ... , 2i-l, 

1=0 

where the coefficients OIf) are defined by the recur­
rence formula 

OICK) _ t OI CK ) (ji I TI ,2J.llj, - i + I) 
2i-T - - I =Zi .J.1 I (jj I T /J Ij, j - J) 

OI~) *0, 
one checks that 

J 

f) l(xITJMlyCK»12=constXo/.2i.K, 
M=-J 

where the constant is nonzero. From this it follows that 
Azj.K "" ° for K = 0, 1, ... , 2j - 1, which proves that a 
trace preserving positive semigroup on M(2i + 1) which 
is invariant under IY is automatically completely posi­
tive. Note that this is by no means the general situa­
tion, since condition (2. Ic') is a strictly weaker re­
quirement than the positivity of the matrix {c Ii}' A par­
ticularly Simple example is provided by the axially sym­
metric relaxation of a spin 1/2 in a strong external 
magnetic field. As shown in Ref. 1, in this case com-
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plete positivity implies the inequality Til:? ~T~ between 
the longitudinal (Til) and transverse (T~) relaxation 
times, whereas positivity alone does not impose any 
restriction on the values of Til and T~. It is to be ex­
pected that complete positivity should imply stronger 
restrictions than positivity on observable parameters 
also in the general case of axially symmetric relaxa­
tion of an arbitrary spin j, as well as in the case of a 
dynamical semigroup which is invariant under a redu­
cible representation of the rotation group, which cor­
responds for example to the description of the relaxa­
tion of two coupled spins (such as electronic and nu­
clear). These problems are currently under 
investigation. 

From (2.2) and (2.4) and Schur's lemma we have 

LTJM=-YJTJM (J=0,1, .. 0,2j; M=J,J-l, .•. ,-J), 

(2.9) 

where Yo = 0, as follows from the fact that At is trace 
preserving, and (see Appendix A) 

2j 
YJ=£rJK~ (J=1,2, ••• ,2j), (2.10) 

K .1 

with 

rJK=(2K+l)(2j~I+(_)2j+1+J+K{~ J J}) (2. 11) 

(J,K= 1,2, ... , 2j). 

Equation (2.10) has been previously obtained by Happer12 

in the framework of a model of a weak fluctuating per­
turbation with exponentially decaying two-point time 
correlation functions. 

In Appendix B we prove the following properties (r-1 

denotes the inverse of the matrix r ={r JK}): 

rJK>o (J,K=I,2, ..• ,2j), 

2j 

B r JK = 2j + 1 (J = 1,2, ... , 2j), 
K.1 

(r-1) -r _ 2K + 1 = (_)2j+1+J+K{K j j} 
JK - JK 2j + 1 J j j , 

A(+)r +A(O)r +A(-)r J+1,K JK J _l,K 

where 

_ 2K(K + 1)(2K + 1) (2J 1) 
- 2j + 1 + , 

A (0) = (2J + 1)[2K(K + 1) +J(J + 1) - 4j(j + 1)], 

A (+) =g(J + 1), A (-) =g(J), 

g(x) =x(2j + 1- x)(2j + 1 + x). 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2. 15a) 

(2. 15b) 

(2.15c) 

The parameters YJ represent the relaxation rates of 
the different multipoles T J M and they are the quantities 
which are usually more directly accessible to experi­
mental measurements. 4 It follows from (2.6), (2.10), 
and (2.12) that, except in the trivial case L = 0, all 
relaxation rates are different from zero. In particular, 
this implies that any initial state relaxes to the termi­
nal unpolarized state p(oo) = [1/(2j + 1)] :u. 
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From (2.11), the first two rows of the matrix {r JK } 
are easily found to be 

r - K(K + 1)(2K + 1) (2 16) 
lK - j(2j + 1)(2j + 2) , . 

r
2K 

= ~K(K -t: 1)(2K + 1) [(2j _ 1)(2j + 3) _ (K _ I)(K + 2)], 
(2J - 1)2J .. 0 (2J + 3) 

(2.17) 

and the recurrence relation (2.15) allows us to compute 
the remaining matrix elements. 

Equation (2. 13) implies that 

r I e) = (2j + 1) I e), 

where (jrn I e) = Jl (Jl E <1:) for all rn =j,j - 1, ... , - j 
(by (2.12) there are no other linearly independent eigen­
vectors with positive components21

). In other wordS, all 
relaxation rates are the same if and only if the strengths 
of the different multipole components of the interaction 
are all equal. 

By (2.10) and (2.6), the relaxation rates YJ must 
satisfy the set of inequalities 

2j 

B (r-1)JKYK:?0 (J=I,2, ... ,2j). 
Kol 

(2.18) 

Equation (2. 18) defines a closed hyperpyramid which, 
except for its vertex, is contained in the open positive 
hyper octant. For example, in the lowest nontrivial 
cases j = 1 and j = % we have 

and 

9Y1 - 5Y2 + Y3 :? 0 l 
3Yl-15Y2 + 7Y3 ~ 0 

11h + 5Y2 - 21Y3 ~ 0 

for j=%. 

Relation (2.18) is equivalent to 

(2.19) 

(2.20) 

(2.21) 

and, for a given value of K, r JK /r J'K is the value of 
the ratio YJ/YJ' for an interaction of pure polarity (2f 
(i. e., AJ = AOJK; compare Ref. 12, Fig. 1). In par­
ticular, uSing (2.16) and (2.17) and the recurrence 
formula (2. 15), one finds 

(2.22) 

and 

(2023) 

There is no simple expression for the lower limit 

of Y3 /Yl as a function of j. Explicitly, we have, for 
example, 
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Since r IjlT ll =J(J + 1)/2, we have 

max r lK = max 'I?: ~J(J + 1). 
1"'K"'2J r lK '1 

(2.24) 

(2.25) 

We suspect that (2.25) holds with the equality sign 
(compare Ref. 12), but we have not been able to find a 
proof of this conjecture. 

3. THE PARAMETRIZATION Wmm' 

Another useful parametrization of the generator L is 
provided by the transition probabilities per unit time 
W mm' among the Zeeman sublevels, which appear in the 
Pauli equation 

:tPm(t) = m~}Wmm'Pm.(t)- Wm.mpm(t)) (3.1) 

for the relative level populations Pm(t) "" pmm(t) 
=tr{PmmP(t» =(jm !p(t)ljm), where we use the notation 
P mm' = IjIll)VIII'!. We can write the master equation 
(1. 1) in terms of the matrix elements of p(t) in the 
standard basis Ijm), Pmml(t)=tr{PmlmP(t))=(jm!p(t)!j111'), 
as 

where 

Lmm'nnl = (P mm' I LP nn') 

= - 0 (P mm.1 TIM)Y/{TIM ipnnl) 
1M 

= (_)2 j +l_m_n 0 (2J + 1) (j 
1M rn 

X Gl _ ~, _ ~ ) Y I. 

, 
-111 

In particular, for the diagonal elements, we have 

and 

= - 6 (TIO iPmm)(Pmmi LPmlm.)(Pm.m·1 T lo ) 
mm' 

= L; {- )2J+l-m-m' (2J + 1) (j 
mm' nl 

x( j j J)L 
m.' - m,' 0 rttmm'm'· 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Inserting (3. 5) into (3.3) we find that the off-diagonal 
elements of the matrix {Lmmlnnl} are completely deter-
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mined by the diagonal ones. Furthermore, setting 111 = 117' 

in Eq. (3.2), we get (3.1) with 

(3.6) 

Therefore, under the assumption of space isotropy, 
coherence effects do not play any role in the evolution 
of the relative populations. 

It follows from (3.4) and (3.5) that only 2) of the 
(2) + 1)2 transition probabilities W mm' are independent. 
Upon insertion of (3.5) into (3.4) and using (3.6), we 
obtain the relations satisfied by the W mm' 

2J J 
W mml=_1_+(_)2J-m-m I 6 '0 (_)2J-n-nl 

2)+1 1=1 n,n'=_J 

x (2J+1)2(j j J)(), 
m -n/ 0 117 

j 
-m' 

x(j, j, Jo)Wnnl. 
n -11 

j J 
-n 0 

(3.7) 

Of the above relations, the following ones can also be 
read directly from (3.4) 

Wmm'= Wm'm' 

",' rnm' =- W _m _m" 

(3.8) 

(3.9) 

(3.10) 

whereas the remaining ones have to be computed ex­
plicitly from (3.7). For example, if j = 1, (3.8)-(3.10) 
are the only independent relations implied by (3.7). 
Choosing W10 and Wi _1 as the two independent transition 
probabilities, we have by (3.4) 

W10 ~ Yz/3,} (3 11) 
W1 _1 = (,/2) - (Y2/6). • 

If) = 3/2, using (3.8)-(3.10), one derives from (3.7) 
the following extra constraint 

4W(3/2)(1/2) - 4W(3/2)(_1/2) + 3W(3/2)(_3/2) - 3W(1/2)(_1/2) 

=0 (3.12) 

and, by (3.4), we have 

1 
W(3/2)(1/2) = 20 (- 3Yl + 5Y2 + 31'3), 

W(3/2)(-1/2J = ~(3Yl + 5Y2 - 3(3 ), 

1 
W(3/2) (-3/2) = 2o(9Y1- 5Y2 + (3), (3,13) 

1 
W(1 /2)(-1/2) = 20 (Y1 - 51'2 + 9(3). 

Equations (3,12) and (3,13) have been previously re­
ported by Papp and Franz. 22 

Using (3.4), (3.6), and (2.10), one obtains the follow­
ing formula which expresses the W mm' as functions of the 
parameters AI: 

Wmm·=O",m' [1- 2·1+1 B (2J+l)A) 
!J 1.1 :J 

+ ~ t (2J + 1) (j j , J) (j 
1.1 M.-I m - m - H m 

j 
- tn' 
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From this equation it is easy to derive the usual 
selection rules on the transition probabilities, depend­
ing on the polarities of the interactions. For instance, 
if AJ = 0 for ,j"- K, we get the well known selection rule 
16.111 I ,- K. 

Finally, impos ing the positivity of the W mm" one ob­
tains from (3.4) and (3.6) a set of inequalities for the 
relaxation rates I J (compare, e. g., Ref. 22). However, 
these inequalities are strictly weaker than those ex­
pressed by (2.18). This is a purely quantum mechanical 
effect, which follows from the fact that the expression 
tr[P1L(P211 must be nonnegative for an arbitrary pair of 
mutually orthogonal one dimensional self-adjoint pro­
jections PI and P2 (compare theorem 5 of Ref. 16). 
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APPENDIX A 

Equations (2. 9) and (2. 5) give 

IJ = - tr[ T:hL(T J',/)l 

with 

2J 
=6 rJKAK (J=1,2, ••• ,2j), 

Kd 

K 

rJK=~ 2:; tr(TjM[T~Q,[TKQ' T JM]]) 
Q,,-K 

(A1) 

or, equivalently, by the completeness of the irreducible 
spherical tensors, 

(A2) 

Then, one obtains (2.11) by inserting into (A2) the ex­
plicit expression of tr(TjlMl[TJ2M2' TJ3M3]) in terms of 
products of 3-j symbols and using standard identities 
and sum rules for the 3-j and 6-j symbols. 

APPENDIX B 

We can rewrite (A1) as 
K 

rJK=~ 2:; !I [TKQ' Tn/liit 
Q,,-K 

(B1) 

where II All 2 = vtdA * A) denotes the Hilbert- Schmidt 
norm o Then, since for example the matrix element 
(jj I [TKh T J -llljj) is nonzero for all J,/(= 1,2'0'" 2j, 
it follows that the rhs of (Bl) does not vanish, which 
proves (2.12). 

From Eq. (2.11) we have 

~ r (2j+1)2-1 + (_)J>1 
ic:l J K = 2j + 1 

x ~ (- )2J+K (2/( + l){K ! JJ:} 
K=1 J J 
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and (2.13) follows from the identity 

~ (_)2 j+K(2K+1){K ~ .~} 
K=1 J .7 .7 

(_)hl 
= 2j+1 (J=1, .. ° ,2.f)o 

In order to prove (2.14), we need the relation 

(r2) J K = 0 J K + (2K + 1) 

which follows from (2.11), (B2), and the identity 

2j {J' 'l{KI 'j}_~+(_)J>K>~ L! (2K' + 1) J(' ~ ~( K f ,j - 2K + 1 (2'; + 1)2 0 
Kd J]), ~ 

Then, by (B3) and (2.13), we have 

2j (_ 2K + 1) 2 2K + 1 2j 
"0 r JK, I K'K- -2' +1 = (r )JK- -2' +-1 2:; ['JK' 

K'=1 :J :J K'=1 
= OJKo 

Finally, the recurrence relation (2.15) is obtained 
from (2 011) and the analogous recurrence relation 
satisfied by the 6-j symbols. 23 

(B2) 

(B3) 

Note added in proof: After this paper went into print, 
we discovered the important review work on optical 
pumping and relaxation by A. Omont, Progr. Quantum 
Electronics, 5, 69 (1977). In Appendix B of the paper 
the author derives a general form for the rotationally 
invariant generator in the reducible case, using the 
general phenomenological theory of relaxation. In the 
special case of reducibility he obtains formulas (2.10) 
and (2.10 and explicitly derives Eq. (2.22). 
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Generation of stationary axisymmetric Einstein-Maxwell 
fields 
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A method is presented which allows one to generate new solutions from old ones. Kinners1ey's functions u, 
v, w associated with the old solutions must be stationary, axially-symmetric, and satisfy a linear 
equation a· u + b· v - c· w = O. The method generalizes work of Bonner and Misra et al. who obtained 
a electric/magnetic dipole solution from the Kerr solution. 

I. INTRODUCTION 

Mainly because of the complicated nonlinear struc­
ture it is a very difficult problem to find new solutions 
of the Einstein-Maxwell equations. Several authors 
attacked this problem by seeking methods by which we 
can generate new solutions from the known ones. 1-7 
In this paper we formulate a new generating method 
which generalizes work of Bonner6 and Misra et al. 7 

The method involves an unfamiliar symbol j with proper­
ties l = - 1, j* =j, Its mathematical implication is dis­
cussed in the Appendix. 

II. FIELD EQUATION 

We consider stationary Einstein-Maxwell fields 
whose metric can be written as 

(2,1) 

where the indices til, n take values 1,2,3 and the func­
tions j, Wm, Ymn do not depend on t. Israel and Wilsons 
showed that the Einstein-Maxwell equations are equiva­
lent to the following simultaneous equations for two com­
plex functions {, <I> and the metric Ymn : 

(Re{ +1 <I>12)V2{ =V{, (V{ + 2<I>*V<l», 

(Re{ +1<I>12)V2<I>=V<I> 0 (V{ + 2<I>*V <I», 

Rmn(Y) = (Re ( + I <I> 12t 2[(l/2) {(m (* 0) 

(2.2) 

(2.3) 

+ <I>{(m<I>* n) + <I>* {*(m<I>n) - ({ +(*) <I>(m<I>* n)]' 

(2.4) 

where V = (VI, V2, V3) is the covariant derivative with 
respect to Ymn, Rmn(Y) the Ricci tensor associated with 
Ymn , and X(m<Pn) the operation ~[(amX)(on<P) + (onX)(om<P)]. 
From ( and <I>(=Ao + fA ,) the functions j, wm and the 
electromagnetic field F ILV are obtained by the formulas 

j=Re{ +1 <I> 12 , 

0mWn- omWn=-Emnkyklj-2Im(01{ +2<I>*01<I», 

FOm = 0mAO' 

F mn = wmonAO - wnomAo +j-l EmnkyklolA' , 

where Emnk is the totally antisymmetric tensor with 
EI23=[det(ymn)]1/2 and ymn the inverse matrix of Ymn , 

Kinnersley5 replaced { and <I> by three complex func­
tions u,v,w: 

( u-w <I> __ v_ 
=u+w' -u+w' (2.5) 

The equations (2.2) and (2.3) become 

wU-uW=O, 

-v(U+W)+(u+w)V=O, 

where 

(2.6) 

(2,7) 

U = (Iu 12 + Iv 12 - Iw 12)V2u - 2(u*Vu +v*Vv - w*Vw) 0 Vu, 

V =( lu 12 + Iv 12 -Iw 12)V2v - 2(u*Vu +v*Vv -w*vw)· Vv, 

W = (Iu 12 + Iv 12 -Iw 12)V2w - 2(u*Vu +v*Vv - w*vw) ·Vw. 

Concerning the replacement (2.5) Kinnersley argued as 
follows: "There is redundancy in a description of this 
sort. In particular, we may choose w to obey any field 
equation we please, in order to obtain simple ones for 
u, n." His choice is W =0. Then we have U = V =0. 

However it is more convenient to choose W =Fw so 
that we have 

U=Fu, V=Fv, W=Fu:, (2,8) 

where F may be a function of xm. The function F is 
closely related to the fact that only the ratio of u, v, w 
enter into Eq, (2.5), In fact if a set of functions (u,v,w) 
satisifes Eq. (2,8), a new set (u', v', u") 
= (h-1u,h-1v,h-1w) also satisfies Eq, (2,8) with the 
new function F' given by 

F' =h-1 Ih 1-2[hF _ (I u 12 + Iv 12 -Iw 12) v2h 

+ 2(u*Vu + v*Vv - w*Vw) 0 Vh], 

where h is an arbitrary function of xm 0 

In Sec, IV we shall formulate a generating method on 
the basis of Eq, (2,8). For later convenience we re­
write Eqs, (2,8) and (2,4) in the form 

(u* , u) v2u - 2u* '" Vu'" 0 Vu =Fu, 

Rmn(')I) = , .. *2 U)2 [(u*, u(m)(u~), u) 
\'" , 

- (u*, u) (utm' un»], 

where 

u={u"'}=(u,v,w), 

(u*, u) = lu 12 + Iv 12 -Iw 12 = 1)",8 U*"'U
8

, 

U'" = 1)0:8U8 , 111)0:811 = [~ ~ ~ ] 
o 0 -1 

(2,9) 

(2.10) 

(2,11) 
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III. OLD SOLUTIONS 

Old solutions must fulfil the following two 
requirements: 

(A) The metric Ymn must be of such a form that 
Eq. (2,9) is practically independent of Y mn• This im­
plies that the metric Y mn is determined after the solu­
tion u of Eq. (2.9) is obtained. In this paper we consider 
the axially-symmetric case in which the metric takes 
the form 

ds2 =f(dt - wdrp)2 _ rl[exp(2y)(dp2 +dz 2) + p2 drp21 
(3.1) 

where f, w, and yare functions of p and z. 

(B) Kinnersley's vector u associated with old solutions 
must satisfy 

(a*, u)=a*u + b*v - c*w =0, (3.2) 

where a= (a, b, c) is a constant vector. The equation 
(3.2) implies that u lies in the plane orthogonal to a. 
We introduce two linearly-independent constant vectors 
81 and 82 on this plane such that 

(a*,eA)=O, (eA*,eB)=1iAB, A,B=1,2. 

Then the vector u can be written in the form 

U=zl e1 +z2e2 • 

(3.3) 

(3.4) 

Because u is a solution of Eq. (2.9), the functions ZA 
satisfy the following equation: 

(z*, Z)V'2Z - 2z A*V'Z A. V'z =Fz, 

where 

Z=(zl,z2), zA=11ABZB, 

(z*, z)= 1iA#*AZB • 

(3.5) 

(3.6) 

This two-component Kinnersley's vector z will be used 
to generate new solutions. 

In the remaining part of this section we investigate 
what solutions satisfy the condition (3.2).9 Since the 
condition (3.2) is SU(2, 1)-symmetric we may consider, 
without loss in generality, only three cases in which 
the vector a take the following forms 

a. = (0,1,0), (at, a.) = 1, 

ao=(0,1,1), (at,ao)=O, 

a_= (0, 0, 1), (a~, aJ=-l. 

(3.7) 

Then the vectors u which satisfy Eq. (3.2) become 
(u"O,w·), (uo,wo,WO) and (u-,v-,0).10 If we choose the 
basis vectors eA in the form 

ei=(1,0,0), e2=(0,0,1), 

ef=(1,0,0), e~=(0,1,1), 

ei=(1,0,0), e2'=(0,1,0), 

the metric 11AB and the vector z are given by 

1111~B 11= [~ ~ 1J ' z+ = (u., w·), 

I/111B" = [~ ~ J. ZO = (uo, wO), 
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(3.8) 

(3.9) 

Since only the ratio of u, v, and w is significant, these 
solutions are uniquely described by the potentials 

(3.10) 

By settingw·=wo=v-=1 in Eq. (3,5) we see that the 
potentials ~., ~o, ~- must satisfy 

( 1 r 12 - 1) V'2 r = 2 e* V' ~. , V' e, 

V'2(1/~O)=0, 

(I ~-12 + 1) V'2~-=2C*V'~-' V'~-. 

(3.11) 

(3.12) 

(3.13) 

The equation (3.11) is the well-known Ernst equationl1 

and its known solutions are those discovered by Weyl, 12 
Kerr, 13 and Tomimatsu-Sato. 14 Since Eq. (3.12) is a 
linear equation, the potential ~o determines a very wide 
class of solutions, which have been discussed by 
Perjes15 and Israel-Wilson. 8 Some solutions of 
Eq. (3.13) have been obtained by the present author. 9 
Hence we have many solutions which can be used as old 
solutions. Simple examples are the followings 9: 

~. =px - iqy (p2 +q2 = 1), 

~o=x-iy, (3.14) 

~-=px-iqy (p2-(J2=1), 

where (x,y) and (x,y) are the prolate and the oblate 
coordinates defined by16 

P=K[(x2-1)(1- y 2)]1/2, Z=KXY, 

p=R[(x2+1)(1- y 2)]1/2, Z=KXy. 

IV. NEW SOLUTIONS 

(3.15) 

We seek new solutions which fulfil the requirement 
(A) of the last section and whose Kinnersley's vector 
u'" is given by 

(4.1) 

where b'" AB is constant. It is easy to see that the form 
(4.1) is a solution to Eq. (2.9) provided 

(blB, bCD) = O'1iAB1)Dc + T11AC11DB, 

11ABb cD + 1)Dcb BA -1)Acb BD -11DBb cA = 0, 

(4.2) 

(4.3) 

where a and T are real constant (a + T* 0) and b AB is a 
vector with components (blAB' b2AB , b3AB ). Using 
Eq, (4.2) we obtain 

(u*, u)= (a + THz*, z)2. (4,4) 

Because u can be replaced by h-1u we may set 

O'+T=t, (4.5) 

without loss in generality, 17 From Eqs, (4.1) and 
(2,10) we obtain 

[Rmn(Y) lnew = 4T[Rmn(y)lold • 

This gives, for the metric (3,1), the relation 

Ynew = 4TYold' 

(4.6) 

(4.7) 

Later we show that T=1 [see Eqs. (4.10) and (4,11)]. 
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Now we determine the vectors b AB which correspond 
to the metrics Tj~BO given in Eq. (3.9). The condition 
(4.3) implies the relations 

(4.8) 

for (AB,CD)=(11,22), (22,11), (12,12), (21,21) and it 
becomes the identity 0 = 0 for other indices. Part of the 
condition for 1TAB implies 

a± + r± = \btt, bjl)= ± \bit, b~2)=- a± 

or 

(4.9) 

Combining Eq. (4.9) with Eq, (4,5) we obtain 
± 1 a =-2 

Since the condition (4,2) for Tj~B contains aO and TO only 
in the form aO + TO, we may choose 

(4.11) 

Using the values (4.10) and (4,11), we tabulate the con-
dition (4.2) for each case: 

\bA'£' b~D) 00 12 21 \b:A*B' beD) 00 12 21 

00 1 0 0 00 1 0 0 
12 0 -1 0 12 0 1 0 
21 0 0 -1 21 0 0 1 

<1>1'£, bb> 00 12 21 

00 1 0 0 
12 0 0 0 
21 0 0 0 

where 

b~o = f2 bi 1 = ± f2 b~2' b~o = f2 br 1 ' (4.13) 

The conditions for b~B cannot be satisfied by the usual 
complex vectors, because the inner product \b*, b) has 
the signature (+, +, -), Fortunately, however, as is 
shown in the Appendix the vectors u" can contain a 
symbol j with properties 

(4.14) 

The symbol j in the vectors u" may be interpreted 
either as an imaginary unit in the functions f, W m, 

'Ymn, F "" or as an auxiliary symbol which can be elimi­
nated from the final expression. With the help of j we 
can obtain many sets of vectors which satisfy the 
condition (4,12), The followings are simple examples: 

• 1 .. 
[OJ b21 =.f2 zi ' 

[ OJ ° 1 . I ~ 
b I2 =,f2 ? +e. ' 

J +e'~ [ OJ bo 1 . i ~ 
21=- J-e 

f2 j_eilg , 

b12 =_1 [~J' f2 .. 
ZJ 

bil = Jz [ ~ .. ] ' 
- zJ 

(4,15) 

where cp is a real parameter, Then Eq. (4.1) becomes 

Class 1. 
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Class II, 

1 

[ 
-iuOi2 l 

2j Re(uOwo*) + 2 exp(icp) Im(uOwo*) 

2j Re(uowo*) + 2 exp(icp) Im(u°u.'o*) [::] -/2 

Class III, 

l' = _1_ 2 Re(u-v-*) . lUJ [iU-i2_ill-i2l 
71' f2 _ 2jlm(u-v-*) 

(4.16) 

Thus starting with the solutions described by the poten­
tials ~+, ~o, ~- we can generate new solutions by the 
formulas (4.16). From the potentials given in Eq, (3.14) 
we obtain 

lul 1 l>2X
2 - q~,2 + 1 l 

I' =~ -2qy 
\ 2 

1!' 2j)x 

L 

110 l:~l 1 l2x_:2:~:iCPb] - '/2 
(4.17) 

It' 2x - 2 exp(icp) y 

f
it l 1 [P2)Z2 - Q?,2 - 1 l 

IlL I' _ ~ 2jJX , (J)2+q2=1), 
,'2 

U' - 2qy 

where we made the following replacements18 : 

1. jq-q,IL jx-x, III. jq--q, 

The expressions (4.17) do not contain the symbolj and, 
if desired, we can easily acertain, without recourse to 
j, that they are solutions of Eq. (2.9). The first vector 
in Eq. (4.17) leads to the Bonner-MPST solution and it 
turns out that the Class I transformation corresponds 
to the generating method discussed by Bonner6 and 
Misra et al. 7 The Class II, III transformations are new. 
Some solutions obtained by our method are listed in a 
separate paper, IS 

APPENDIX 

In this appendix we clarify the mathematical implica­
tion of the symbolj. At first sight the j seems to be 
a very curious symbol: its sign does not change by 
complex conjugation in spite of its imaginary nature, 
However this apparent difficulty disappears when we 
realize what is meant by complex conjugation in a C01Jl­

plex-potential formalism. The point is that the imagi­
nary unit whose sign must change by complex conjuga­
tion is only the one which is introduced by hand in the 
course of the reformulation of the Einstein-Maxwell 
equations. If the potentials contain an imaginary unit 
of a different origin, its sign had rather remain un­
changed by complex conjugation. Such a case occurs 
when the coordinates xm and the parameters 
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eN (N = 1,2, 00') take complex values, 20 We set 

xm=xj +jx2', eN =ef +jef, (Al) 

where a new symbol j is employed as an imaginary unit 
(j2 = _ 1) in order to indicate that it has a quite different 
origin from the imaginary unit i used for the complex­
potential formalism. For the imaginary unit j we have 

(A2) 

To gain an insight into the role of the property (A2) 
we analyse the complex-potential formalism of Ernst. 11 

Consider the following system of differential equations: 

fV2f = Vf 0 Vj - V q; 0 V q;, fV2q; = 2Vj, V q;. (A3) 

Ernst introduced a complex potential 

and obtained a single complex equation 

Re[ V2[ =V[ 0 V[ 0 

(A4) 

(A5) 

Usually it is considered that Eq, (A5) is equivalent to 
the system (A3) only whenj and q; are real functions. 
However it can be easily shown that the formal realities 

1* =j, q;* = q; (A6) 

are sufficient for Eq, (A5) to be equivalent to the sys­
tem (A3), In fact, under the condition (A6) the equation 
(A5) and its conjugate equation become 

fV2(f + iq;) = V(f + iq;) 'V(f + iq;), 

fV2(f - iq;) = V(f - iq;) 0 V(f - iq;) , 
(A7) 

The addition and the subtraction of these equations 
leads to the system (A3). The role of the property (A2) 
is to guarantee the formal realities (A6) even when the 
coordinates and the parameters are complex numbers. 
Accordingly, if the system (A3) is satisfied by complex 
functions j and q;, then Eq, (A5) is satisfied by a poten­
tail [ containing the symbol j, and vice versa. 
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Similar consideration applies to the complex-potential 
formalism of Kinnersley, The symbol j contained in 
u, v, and w is interpreted as the imaginary unit which 
makes the functions j, W m, Ymn> and F I-'V be complex, 
If j is contained in the form (Al) we can eliminate j 
from u, v, and w by analytic continuation, 
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Theorem on the representations of SO(n) groups 
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It is shown that SOC n) groups (n > 5) that possess a c -number Lorentz Casimir operator F do not have 
infinite-dimensional representations. Accordingly these groups cannot support new positive-energy wave 
equations of Staunton type. In an appendix Staunton's spin-1!2 positive-energy wave equation is extended, 
in an analogous manner to that used by Rarita and Schwinger (RS) on Dirac's equation, to yield positive­
energy wave equations for arbitrary spin. It is noted that analogous auxiliary conditions to those of RS do 
not hold. Stationary solutions for low spin are listed. 

I. INTRODUCTION 

Two spin-i equations1 exist that are representations 
of the SO(3, 2) group, such that the Lorentz Casimir 
operator F is a c-number. One of these, Dirac's equa­
tion,2 serves as a starting point for much of modern 
physics. It has been extended, by Rarita and Schwinger 3 

among others, 4 to provide relativistic equations for 
other spins. The other equation, Staunton's positive­
energy wave equation, S has only recently been dis­
covered and while some of its properties are known, 6 

its full range of possible uses in physics have not been 
explored. 

Positive-energy equations for other spins are ex­
pected to exist. 7 It is the purpose of this paper to show 
that when the Lorentz Casimir operator F is a c-number 
there are only finite-dimensional representations of the 
SO(n, m) group (n + m > 5).8 Accordingly one must seek 
higher spin positive-energy wave equations9 by looking 
in other directions. 10 In an appendix we demonstrate the 
analog of the Rarita-Schwinger procedure3 for obtaining 
a spin-f positive-energy field from the known Staunton 
spin-~ equation. This is not the same thing as finding a 
positive-energy spin-f equation of Staunton-type because 
auxiliary conditions must be imposed. 

In Sec. II, Staunton's equation is briefly recalled. 
Section III contains our theorem on the SO(n, m) group. 
It shown that Staunton's spin-i equation is the only one 
constructible as an infinite-dimensional representation 
of an SO(n, m) group (n + m ~ 5) that contains the Lorentz 
Casimir operator as a c-number. Appendix A, which 
contains the Rarita-Schwinger type extension, contains 
one new point: The subsidiary conditions are shown to 
be different from those in the Rarita-Schwinger case. 
Solutions for stationary cases are given in Appendix B. 

II. STAUNTON'S SPIN-Y2 EQUATION 

Staunton's spin-i positive energy wave equations is 

T"w(xJL ,ql,q2)=O, (1) 

where 'it is a space-time scalar function and a function 
of internal variables ql and q2' 

(2) 

The operators S"V and V" satisfy the SO(3, 2) Lie algebra 
commutator relations 

[V" ,Spa] = i(g"a Vp - g"P Va)' 

[V"' VJ=iS JLv • 

The operators S "V and V" may be realized by the 
second-order operators: 

S23 = - i(qlq2 + 1)11h) , 

S31 = - Hq~ +TJ~ - q~ -1)~), 

SI2=-Hq2TJ1 -ql1)2)' 

slO=Hq~ -1)~ - q~ +TJ~), 

S20 = i (TJ11)2 - q 1 q2) , 

s30=HqlTJl + 1)2q2) , 

Vo = H~ + q~ + 1)~ + 1)~), 

VI =1(- ql1)1 + q21)2) , 

V2 =1(ql1)2 + q21)1) , 

V3 = H~ + q~ -1)~ - TJ~), 

where 711 = - i%qf· 

The free-field momentum eigenvalue solution5 is 

'it = (Aql + Bq2)'it0 (q ,p) exp(- ip'1. x
JL

), 

where 

'itO(q,p) = exp{ - i(po + P3tl[m(q~ +~) 

+ iPl (q~ - q~) - 2iP2QlQ2l} , 

(3) 

( 4) 

(5) 

(6) 

and A and B are arbitrary. A and B provide the two 
spin-~ degrees of freedom. Note also that m is the 
particles' rest mass. All these results follow logically 
from the representation condition that F=iS"vSII.v be 
a c-number. 1 

III. THEOREM ON SO(n) 

Theorem: If the Lorentz Casimir operator, F, of the 
internal group SO(n) , n> 5, is a c-number, then the 
group does not have any infinite-dimensional represen­
tations. 

Proof: Consider an internal group SO(n)l1 whose 
generators satisfy the commutation relations 

[S AB ,scD1 = i(gACSBD - gADSBC + gBDSAC - gBCSAD) ' (7) 

where capital Latin indices range over the (n' + 4)-direc­
tions of the space (n' > 1) that are labeled by four-
valued lower case Greek indices and the n' -valued 
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lower case Latin indices. Then SAB ::::{S".,S""S,}. The 
metric gAB is diagonal with components of magnitude 
one. 

Taking the Lorentz Casimir operator Fe=. t5".S"v to 
be a c-number, evaluating the commutator of S,,' with 
F, and also the commutator of S,a and 5" a, one obtains 

SlaS"a::::1iS,,, ::::-S"as,a · 

Now define Do as 

(8) 

D jJ ==Sj"S/' (9) 

The results of the evaluation of [S,,,,S/] and of [S,,, , 
Sjv]S"v, using Eq. (8), may be compared to yield 

(10) 

Upon contraction of Eq. (10) with ItJ and with Si}, we 
obtain 

D ==DjJg<J:::: tn' F=Si"S''', (11) 

SUD'J=2iS iJS jJ . (12) 

Since [SABSAB,S".] =0 (this follows from the Lie 
algebra), it follows from Eq. (11) that [S" I' SJ"SJk] =0. 
Taking [S""SJkS'k] = 0, and expanding the commutator 
[Sjl"S'J] we find 

S,,,SJ, = - ti(n' -1)Sj" =S/Sj,,' 

Similarly to the above, define 

(13) 

(14) 

form [S,,,,S'.1 and compare it to the evaluation of [Sil" 
SJv]Sj1, using (13) to obtain 

(15) 

S'JSjJ =tn'(n' -1)F. (16) 

Since division by n' -1 is involved in obtaining (15), 
this is the place where a difference between the present 
work and the case considered by Staunton and Browne 
(n' = 1) occurs. 1 

Compute [5,,, ,Sj.] S"" and [S"" ,S,,,]SkJ by two methods. 
Obtain 

and 

g,/S"vS"" -1iSv")= -S,J(Sv'" +1io~) 

g",,[SkiS/ - ti(n' -1)Su] =giADv" - ti(n' -1)Sv,,] 

-S.",S'J -S,,?,,,,. 

(17) 

(IB) 

Contract (17) with It' and SiJ. Find, USing (16) that 

S"vSI'''' = tF6: -n'-l Dv a + %iSv
a , (19) 

n' 
D.", = "3 F (gv", + 2i S.,,). (20) 

Similarly contract (18) with g"" and gli. These opera­
tions yield , 

S"IS"J =~ FgIJ - tD/J + h(n' - OSIJ' (21) 

and 

Dv" :::: tn' Fg"" + tin'Sva' (22) 

Comparison of (20) and (22) indicates that 

(23) 
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and thereforeD=n', whileSi'SiJ=tn'(n'-l). Ac­
cordingly, SABSAB =t(n' +3)(n' +4). Since SO(3,1) is a 
noncompact subgroup, by assumption, the representa­
tion considered is shown to be nonunitary and finite­
dimensional. The theorem is proven. 

In what follows we generate the connection between 
the representations considered and Dirac matrices. 

The other Lorentz Casimir operator, G, is given by 

The operator IlIl' is defined by 

Ili" == [Si'" G]' 

and is found to be 

(24) 

(25) 

0,,, =tE"vpaSvPS/, (26) 

Squaring (26) and using (22) and (23) we obtain 

01,,01"=-9n'/4. (27) 

This ensures that G is not a c-number. If G were a 
c-number, then (25) would indicate that n,,, =0, in 
contradiction with (27). 

By utilizing (22) and (26), we establish that 

I _ in' _ 3n' pa n ~Si" - 2 gQaG 8 EQ8paS . (29) 

Multiply (26) by Ski and use (13) to obtain 

SkIOI,,=-ti(n' -1)n"". (30) 

Now multiply (29) and (28) together, contract, and 
utilize (10), (18), and (30) to find 

From (15) construct 
. . n' 

D"v + Dv" = Si"S' v + SiVS'" ="2 If".· 

(31) 

(32) 

The results embodied in (23), (31), and (32) indicate 
that a finite dimensional matrix representation exists 
for any SO group within the scope of this discussion. 
It is realizable in terms of finite matrices whose ele­
ments may be grouped as Dirac y matrices. Note that 
the representations permitted are nonunitary. Also 
note the sign of G2. Therefore, despite the large num­
ber of scalar operators constructible, no positive­
energy infinite-dimensional wave functions exist for the 
groups being considered. 

As an example of the matrix representations, con­
sider the six-dimensional case. In six dimensions, 
with i, j = 5, 6 one may take 
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Then 

G= _ t[YS OJ, 
° YS 

and 

For the general case we include, for completeness, 
some other interesting relations that may be obtained: 

S/QI" =~iOIV+4SivG, 

i 
Q,,,S/' =-2"01v +4GS iV ' 

DIJO'" = - (n' - 2) 0/ = OJ,, Djj' 

S'J(S,,,S,. +S}VS,,,) = -~n'(n' -1)S"", 

E"Vo<II O,0< nla =n'S"v. 
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APPENDIX A 

ConSider the SL(2, C) generator M"v given by 

where 

L".=i(x"ov-xvo,,), :0"v=- h(y",}), 

and Y" are the Dirac matrices and S"v are given by 
Eq. (4). In some cases one or more of the terms in 
(Al) may not be used. 12 

(33) 

(A1) 

Now let 'It be a multicomponent wavefunction instead 
of a scalar. The multiple components may variously be 
labeled via tensor indices, Dirac spinor indices, or 
both. These indices will be suppressed for most of this 
appendix. 

The wavefunction that describes the new field is re­
quired to separately satisfy Eq. (1) for each of its 
components. It also must satisfy 

(A2) 

where m is the mass and j the spin. Here W" is the 
Pauli-Lubanski operator for the particular M"v con­
sidered. By construction, 'It transforms like a spin-j 
field under the action of the Lorentz group generated 
byM",v' 

1814 J. Math. Phys., Vol. 19, No.9, September 1978 

Several points should be noted. First, the solutions 
may be obtained in all cases by use of Clebsch-Gordon 
coefficients br addition of angular momenta. 13 This 
means that one may immediately write solutions for 
all the interesting low spin cases. These are tabulated 
in Appendix B. 

Secondly, only a few low spin possibilities occur. 
There are only a few types of field for each spin that 
may be generated by this method. (For spin ° there 
are three; for ~ integral spin there are four; for integral 
spin there are five.) 

Third, auxiliary conditions exactly similar to those 
that hold in the Rarita-Schwinger spin-% theory (i. e. , 
P"'It" =r"'It" =0) can not be applied here. For example, 
in the case of a vector field, 'It", we have 

which implies on contraction with V" 5 the Majorana 
equation 

(A3) 

(A4) 

Then if P"'It" =0, upon contraction of (A3) using (A4) 
and (3) we obtain 

(A5) 

In the stationary case [adding a J1 index to A and B in 
Eq. (5) 1 this equation is identically satisfied and of 
course >VA = ° (.'1 0 = Bo). 

However if V">V" =0, upon contraction of (A3) using 
(A4) and (3) we obtain 

P"V,,=0. 

The condition V"'It" = 0, evaluated for the stationary 
case solution (equating coefficients of independent in­
ternal functions of qi to zero) gives the following re­
lations between Ai and B i 

AI=- iA3=-B2' 

BI = iB3 =A2 • 

Thus there are only two independent components 
among the eight components of >V" in this case: not 
enough for a spin-% particle. Accordingly the condi­
tion V">V", =0 may not be imposed. 

Just as Staunton's procedure5 offers an alternative 
method of taking the "square root" of the Klein-Gordon 
equation, it should be possible to use higher spin 
fields to find a "square root" of Einstein's gravitational 
equations via positive-energy wave equations. This 
would be analogous to the one found by Teitelboim 
using standard spin-% fields .14 All questions of super­
symmetries within the framework of positive-energy 
wave equations, as well as those of interactions between 
fields each with positive-energy internal coordinates, 
to our knowledge, remain unexplored. 

APPENDIX B 

There are three methods by which spin-O wave equa­
tions may be constructed. The first is the standard 
Klein-Gordon scalar field equation itself. The second 
method involves a field with internal coordinates q1' 
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q2 and a spinor index. The third involves a field with 
internal coordinates, a spinor and a vector index. 

The spin-eigenvalue forms of Eq. (5) occur when 
B=-iA (+i) and whenB=iA(-i). Denote these 
solutions of Staunton's equation by IS +) and IS -) 
respectively. Denote a Dirac column spinor, with 
eigenvalues of 6 12 that are + i, - i by I D +) and I D -) 
respectively. Also denote a spacelike space-time 
vector field whose z components are +1,0, and -1 
by IV+), IVO), IV-), respectively. 

Then using Clebsch-Gordon coefficients, 13 the two 
new spin-O wavefunctions satisfying Eqs. (1) and (8) 
are 1J!D,S.O and 1J!D,S,V,O where 

1J! D, S ,0 = i f2[ I D + ) Is - ) - I D -) IS + ) ], 

-Y D,s,v,o=tl3[ /D+) IS+) IV-)-if2(/D+) Is-> 

+ I D - > I S + » I vo > + / D - ) I S - > I V + > ] . 

There are two ways to compose spin i in addition to 
"pure" Dirac or Staunton fields. These are by adjoining 
to either field a space-time vector index. When the 
Dirac field is so acted upon, the Rarita-Schwinger 
cas e is obtained. It includes a spin-i component. The 
only new case involves a field 1J!S,Vol/2 given by 

-Y S, Vol/2 (spin up) = + tv'3 [+ Is +) / VO> - 121 S - ) I V + >], 

and 

-Y S,V,l/2(spin down) =tl3 [ + f2ls + > I V - > -Is -)1 VOl J. 
The new spin-i field obtained, 1J!S,V,3/2' is given by 

-Ys ,v,a-'2(+i)= Is+)lv+), 

-Y s , v ,3/2 ( + i) = tv'3[ f2 I s + > I V 0) + I s - > I V + ) ], 

-Y S ,v, 3/2 ( - i) = ti3 [f2 I s - ) I VO) + Is + ) I V - ) j, 

-YS'V'3/2(-~)= Is->Iv-). 

Some of these cases may allow a minimally coupled 
electromagnetic interaction. This is currently being 
investigated. The possibility of such an interaction 
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exists because the fields are required to satisfy, for 
each component separately, Staunton's equation, which 
permits such a minimal coupling. 
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12 Methods used in this Appendix are well known. They have 
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Field equations and integrability conditions for special type 
N twisting gravitational fields 

F. J. Ernst and I. Hauser 

Department of Physics. Illinois Institute of Technology, Chicago, Illinois 60616 
(Received 16 January 1978) 

We let SNT designate a special kind of twisting type N gravitational field solution of the Einstein field 
equations, viz., one for which there exists a real scalar field X which satisfies 

(V'[ak/l- k[a V' /lX) (V'1Jka)t a = 0, 
where ka is a principal null vector, t ata = taka = 0, and t ata * = I. We obtain some theorems which 
provide necessary and sufficient criteria for an SNT to be the twisting type N metric discovered by I. 
Hauser, in Phys. Rev. Lett. 33, 1112 (1974). Field equations, a hierarchy of integrability conditions, and 
analytic techniques which are applicable to the quest for a new SNT are given. Two tractable SNT 
subcases are considered in detail. 

1. INTRODUCTION 

We let NT denote any type N vacuum solution of the 
Einstein field equations such that the principal null rays 
are twisting. 1 For any given NT, there exists a null 
tetrad k, m, t, t* where k is a principal null vector, 
and the corresponding connection forms are given by2 

dxatllv aka =z(A *k + t) =ds, 

dxa (mllv aka + t*avata) = 0, 

dxat*aVama=h ds. 

(1) 

z, A, s, and h are complex scalar fields, and k:=dx"'!l", 
and t: =dxfY.tfY. are I-forms. The real part of z is the ex­
pansion and the imaginary part of z is the twist of the 
principal null rays. 

By a special NT, to be abbreviated SNT, we shall 
mean any NT which satisfies the condition3 that there 
exists a real scalar field X such that 

!l A (Ads + A *ds*) = II A dx. (2) 

The only NT known to date4 is an example of an SNT; 
this known solution will be designated as NT1• 

The general NT problem has been surprisingly re­
sistant to the efforts of numerous investigators. The 
authors have, therefore, recently focused their atten­
tion on the problem of finding a new SNT. For reasons 
which will become clear in Sec. 2, the SNT field equa­
tions are reasonably amenable to analysis and seem to 
offer some chance of discovering a new NT, i. e., if 
there exists any SNT other than NT1. 

The main obj ective of this paper is to present the 
equations, techniques, and a few theorems which we 
have developed in our quest for a new SNT. As 
evidenced by the numerous requests for details which 
we have received, there is an expanding interest in the 
type N twisting problem. It is our hope that the results 
of this paper will be useful to the newcomers as well as 
to current researchers in the field. We would especially 
like to see some involvement by mathematicians who 

a)Research supported in part by the National Science Founda­
tion under Grant No. PHY75-08750. 

may not be versed in general relativity but who are 
attracted by a curious problem in differential-functional 
equations. 

The NT field equations which we use have been 
derived in a preceding paper by one of the authors 
(1. H.). 2 In Sec. 2, these equations are specialized to 
SNT and are expressed in a modified form which is more 
suitable for deriving their integrability conditions. A 
hierarchy of four integrability conditions is derived in 
Sec. 3. 

In Sec. 4, we consider the problem of finding those 
SNT which have a Killing vector. So far, our efforts 
have yielded only NT!> and it is conceivable that NT1 
is the only SNT with a Killing vector. The work which 
remains to be done to settle this question is explained. 

In Sec. 5, we pursue another likely subcase of the 
SNT problem, one which does not necessarily involve 

the existence of a Killing vector. For this subcase, two 
additional integrability conditions are derived. 

In the summary of Sec. 6, we review current work in 
progress and suggest further lines of inquiry. 

2. THE SNT EQUATIONS 

As has already been discussed in a preceding paper 
by Hauser, 2,3 the assumption (2) implies the existence 
of a coordinate system p, a, s, s* 5 and of a complex 
scalar field 11=I1(s, "(,*) which does not depend on p and 
a such that, for any SNT, 

k =p(da + I1d"(' + l1*d"('*), 

I=(p+ir)d"(,-A*!l, (3) 

m =dp - ~[p-1(DD* + D*D)p]k - i(Dr - 2Ar)d"(, + i(Dr 
-2Ar)*d"('*, 

where 

p:=Re(z-1), 

r: =Im(z-1), 

c a 
D:=af-11 au ' 
p: = exp( - x), 

(4a) 

(4b) 

(4c) 

(4d) 
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A:=DX, 

A:=p-lr =h(Dn* - D*n). 

(4 e) 

(4f) 

The only nonzero null tetrad components of the Riemann 
tensor are 

m"t*am rt*6 R"ar6 =[(p+iT)p]-lh (5) 

and its complex conjugate, where we always use the 
overhead dot to designate differentiation with respect to 
u, as in 

• ah 
h:= -. au 

Except for p itself, all of the scalar fields in the above 
expressions are p-independent and are to be computed 
from p, n, and h by using Eqs. (4d)-(5). The fields 
p, n, and h are to be found by solving a triad of equa­
tions which constitute the crux of the problem and which 
are given, for any SNT, by 

AD(A-1DP) =- (h +(3)P, 

DD*P-(Y/4)P - iAP=O, 

D*h=O, 

(6) 

(7) 

(8) 

where we have restricted our chart to a domain in which 
A > 0 and where 

P: = A 1/2p, (ga) 

{3: =A 1/2D2A -1/2, y: =DD*lnA. (9b, c) 

Equation (7) is not completely independent of Eqs. (6) 
and (8) in the sense that Eqs. (6) and (8) imply that the 
left side of Eq. (7) is independent of u. 6 However, this 
does not signify that we can ignore Eq. (7) in the 
analysis. Equations (6)- (8) were obtained by s?ecial­
izing the general NT equations given by Hauser to SNT, 
but we have modified his equations by using P instead 
of p as a dependent variable. The basic reason for this 
modification derives from a study of the invariance 
group of the preceding equations, and we now consider 
this group. 

There is a residual arbitrariness in the null tetrad 
and the coordinate system. Specifically, all of the 
preceding equations remain invariant in form under the 
following group of transformations2 in which F =F(~) is 
an arbitrary analytic function of ~, g(l;;, 1;;*) is an arbi­
trary real C~ function of ~ and ~*, and (Y. is a positive 
real scaling parameter: 

k -k exp(~F +~ F*), 

t - (t + ~F'*k) exp(~F - ~F*), 

m - (m - ~F't - ~F'*t* - t IF' 12) exp( - ~F - ~F*); 

p-p, ff-aa+g(~,I;;*), 1;;- fd~expF. 

(10) 

Various scalar fields which we have defined undergo the 
following corresponding transformations2: 

1817 

A - (A - ~F') exp( - F), 

P _a-1/2p, 

~ -O'~ exp(- F- F*), 

n- [O'n- (~~) ] exp(-F), 
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(lla) 

(l1b) 

(llc) 

(lId) 

h - [h - ~F" + t{F,)2] exp( - 2F), 

{3 - ({3 + ~F" - t{F,)2] exp( - 2F), 

y -y exp( - F- F*). 

(lle) 

(11f) 

(llg) 

Observe that, except for a scaling factor, P is an in­
variant, and DP, DD*P, and ~D(~-IDP) are tensors 
under the group. This is what induced us to use P in­
stead of p as a dependent variable, and this attention 
to the tensor character of the terms paid off in great 
simplifications of Eq. (7) and of the integrability con­
ditions which will be derived in Sec. 3. 

From Eq. (lld), it is clear that g can be chosen, with 
a = 1 and F = 0, to transform to a new n which satisfies 
the condition 

Dn* + D*n = o. (12) 

(Dn = an/aI;;, since an/off = o. ) Then, from Eqs. (4£), 
(lId), and (12), there exists a real scalar field K 

= K (I;;, ~*) such that 

(13) 

whereupon the geneml solution of Eq. (8) is gil'en by 

h =h(a- iK, ~). (14) 

It is the nerdness of this general solution of Eq. (8) lI'hich 
especially makes the SNT problem simple to nnalyze 
compared with the geneml NT pyobiem. With the con­
straint of Eq. (12), the function g(l;;, 1;;*) in Eqs. (10) 
and (11) is no longer arbitrary; instead, it is given by 

g(l;, ~*) = 2~ [r(I;;) - f(I;)*], 

where f(l;;) is an arbitrary analytic function of 1;. The 
transformation law for K corresponding to the group 
(10) is given by 

K - 0' K + ~[r(I;) + f(1;)*]. 

(15) 

(16) 

The arbitrary analytic function F(I;) does not enter into 
the transformation of K. 

We next show exactly how NT j fits into the above 
scheme by proving the following theorem with the aid of 
Eqs. (gc), (llc), (lld), (llg), (13), and (15). 

Theorem I: An SNT is an NT j if and only if y = O. 

The proof proceeds by first noting that NT 1 as given 
by Hauser2• 4 is clearly an SNT such that c. = constant, 
which implies y = O. As regards the converse, consider 
any SNT such that y = O. Equation (gc) implies the ex­
istence of a function FlU;) such that c. = exp(F I + Fj*). 
Apply the transformation (Uc) with F = F j and 0' = 1, 
whereupon ~ -1, and Eqs. (13) imply 0 = ii;* + F 2 (1;). 
Apply the transformation (lld) with f= 1;2 + 2i jd?;F2, 

whereupon n - i(1;; +?;*). This is preCisely the choice of 
n which led to NTj; i. e., any NT with this 0 is an 
NT j • Q. E.D. 

For any given chdce of 0(1;;, 1;;*), lPe Y(J/{ard Eqs. (6) 
and (7) as a pair of linear equation ill P fa v 1('1i iclz Ii 

plays a role analogous to an eigcl1I'al1le. The choices of 
o for which a solution exists and the corresponding II 
are to be determined by analyzing the successive in­
tegrability conditions1 for Eqs. (6) and (7) as computed 
with the aid of the relation 
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DD*-D*D=2iA(:a)' (17) 

We next derive the first four integrability conditions. 

3. FOUR INTEGRABILITY CONDITIONS 

The manipulations of this section are guided by care­
ful adherence to the tensor character of the various 
terms under the group (10), and reference to Eqs. (11) 
will help the reader to follow the calculations. 

Operate on Eq. (7) with D, and apply Eqs. (17), (6), 
and the identity 

(18) 

After some manipulation, we obtain the first integra­
bility condition 

3iADP =HD*f3)P - hDP + (h + f3)D* P. (19) 

Divide Eq. (19) through by A, and operate with D*. Use 
Eqs. (6)- (8), (17), and (18). The imaginary part of the 
result is a mere identity, but the real part yields a 
second integrability condition 

A2p = HDf3*)DP + MD*f3)D*P 

+ [..1.AD(A-1Df3*) +..1.AD*(A-1D*f3) 
12 12 

- ± 1 h + 131 2 
- -ki]p. (20) 

Divide Eq. (19) through by A 2, and operate with D. Use 
Eqs. (6),. (7), and (18). We obtain a third condition 

2 (D*{3)DP + {A2D[A -2 (h + f3)]}D*P + 4i(h + f3)AP 

(21) 

Divide Eq. (21) through by A, and operate with D*. Use 
Eqs. (6)- (8), (18), and (19). In the resulting DP term, 
use the identity, 

D*(A-1D*(3)=A-1/2(D*2D2A-l!2)_ID2A-1/212. (22) 

We then obtain the fourth condition 

[2AD*(A -lD* 13) - 41 h + f31 2 ]DP+ [iA2D(A -2D*(3) + iAh]D* P 

+ 2i(D*(3)AP + {- A2(h + f3)*D[A _2 (h + 13)] + hD*f3 

(23) 

The general SNT problem is still sufficiently com­
plicated so that it is wise to start with the analysis of 
some subcases, and that is precisely what we did and 
are still doing. We recall that NT 1 has a Killing vector. 4 

The first question which we studied in any detail was 
that of the existence of another SNT with a Killing 
vector. The techniques which we are using to answer 
this question and some partial results which we have 
obtained are covered in the next section. 

4. PROBLEM OF AN SNT WITH A KILLING VECTOR 

Throughout Sec. 4, we assume that a Killing vector 
K exists. 8 It is then convenient to replace the complex 
coordinates s, s * by real coordinates5 

(24) 

In the Appendix, we show that the transformation (10) 
can be applied to select the null tetrad and coordinate 
system such that there exist a real constant b and real 
scalar fields X = X (~), s, and q = q (s, 0 for which the 
following relations hold: 
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s: = a exp( - b1), 

K = X(~) exp(b1), 

A = 5(~) exp(b1), 5: = Hx" + b2X), 

h = [(s - iX) exp(ibO], 

p=q(s, ~)exp (- b1), 

D =_1_ (~_ .~ _ '(X' _ 'bX) b"~) ..f2 0 ~ 1 (1) lIe a a ' 

a a a 
K"'- =- + bfJ-- (Ref. 9), 

ox'" (1) oa 

(25a) 

(25b) 

(25c) 

(25d) 

(25e) 

(25f) 

(25g) 

Observe that Eq. (25d) is consistent with Eqs. (14), 
(25a), and (25b). With the commitment to Eqs. (25), 
the only remaining arbitrariness in our null tetrad and 
coordinate system is given by Eqs. (10) and (15) with 

F=f3+iE7T f= (fJo+iKo) exp(-i'l"fbs), (26) 

where 13, ClO, KO are real parameters, and E=O or 1. 
The Killing vector undergoes the corresponding trans­
formation K - K exp( - (3 - iE7T). 

The derivation of Eqs. (25) and (26) is relegated to 
an Appendix to avoid any distraction from our central 
task of describing how the integrability conditions are 
applied. The only integrability conditions which we need 
in this section are Eqs. (19) and (20). The first step is 
to use Eqs. (6), (7),. (9a), (~?c), and (25f) to compute 
expressions for ADP and A2p as linear combinations of 
DP, D* P, and P, with coefficients which depend at 
most on h + 13, (h + 13)*, 5, 5', 1', and the variable 

x:=X'- bs. (27) 

These expressions are then substituted for D.DP and 
A2p in Eqs. (19) and (20), and the results are expressed 
as follows: 

vDP - (h + 1\)D* P + (1/fi)[3 5x-1 (h + 1\) + Vl]P = 0, (28) 

- (3/2fi)[viDP + V2D* p] + (I h + 1\ 12 + V3)P= 0, (29) 

where 

1\: = 13 + i 52 x-2, 

v: =i52x-2 - ~ (5' - 2ibG)x-l + h, 
vI: = _1.53x-3 - hb 52x-2 + hBx-1 - tf3', 

2 

V2: = 5(5' + 5ib 5)x-2 + 13', 

v3: = - (~52x-2)2 + {(3y + 9b2)52x-2 

(30a) 

(30b) 

(30c) 

(30d) 

_ {AD(A -IDp*) _ {AD*(A -ID*f:l) +*1'2. (30e) 

Note that all of the above 1\, v, Vi are polynomials in 
x-I with coefficients which depend only on ~. In general, 
I' is real; 13 is real if b = 0 and complex if b'" O. 

Equation (28), its complex conjugate, and Eq. (29) 
are linear and homogeneous in DP, D*P, P. Therefore, 
for a solution to exist, it is necessary that the deter­
minant formed from their coefficients vanish, 

H35x-1(V2 + vi) [Iz + 1\ 12 + (3 5x-1 v + vl)*vT (II + 1\) 

+ (3 5x- i v+ Vl)V2(1z + 1\)* + V*Vlvt + vvjv2} 

- ([ h + 1\ [2 + V3)( [ h + 1\ [2 - [v 12) = O. (31) 

In spite of the imposing appearance of the above equa-
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tion, there is a systematic method of attacking it which 
offers a good chance of either giving us a new NT solu­
tion or enabling us to prove that the only SNT with a 
Killing vector is NT!. The reader can gain a better un­
derstanding of our method by first studying its simpler 
applications to the proofs of two theorems. After we 
have given and discussed these theorems, we shall re­
turn to Eq. (31) and discuss our current efforts to 
analyze the equation. 

The first theorem is motivated by a striking feature 
of NTh 4 viz., for the given h of NTh Eqs. (6) and (7) 
have two real linearly independent solutions PI and P 2 • 

In fact, the only essential parameter of NT! is the 
mixing parameter j.l which occurs in the linear com­
bination P = (cosj.l)p! + (sinp )P2• The following theorem 
provides us with a converse statement pertaining to the 
set of all SNT with Killing vectors. 

Theorem II: Suppose there exists a choice of h and a 
corresponding SNT with a Killing vector such that Eqs. 
(6) and (7) have two real linearly independent solutions 
for P (i. e., there is exactly one essential parameter in 
addition to those occurring in h). Then, b = 0, and the 
SNT is NT!. 

The proof starts by observing that the premise of the 
theorem implies a rank less than 2 for Eq. (28) and its 
complex conjugate regarded as two linear homogeneous 
equations in DP, D*P, P. Therefore, 

[h+A[2_[v[2=0, (32) 

v(3 ox-Iv + Vl)* + (3 OX-Iv + vl)(h + A)* = O. (33) 

In the rest of the proof, we distinguish between the 
cases b = 0 and b of O. 

Suppose b = O. Then a = S, K = A, A = 0, and x == K'. 

Also, A, v, and Vi are real and depend at most on ~. 
From Eq. (5), h cannot be zero. Therefore, Eq. (33) 
implies 

30x-I v + VI = O. (34) 

We substitute from Eqs. (30b) and (30c) into the above 
Eq. (34) and use Eqs. (9b), (9c), and (25f). Then, upon 
replacing ~ by x as our independent variable, Eq. (34) 
becomes a linear homogeneous differential equation in 
A with a solution of the form 

(35) 

where Ao, c1> C2 are constants, and m and n are simple 
irrational numbers whose specific values are of no 
importance for the understanding of the general pro­
cedure. The proof continues by applying a key technique 
to Eq. (32). Solve Eq. (32) for h*: 

(36) 

Then, operate on the above with D and use Eq. (8) and 
the relation 

12 Dh = (- 2iK')h, if b = 0, (37) 

which follows from Eqs. (25d) and (25f). There resuUs 
an equation which can be algebraically solved for Ii to 
give 
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Operate on the above with D*, and use Eq. (37) and the 
fact that D*Ji = a (D*h)/aa = 0 for SNT. There results 

0== (A' / JK')' (h + A)2 + 2[ (A' /V2K')A' 

- (v' /VK')' ](h + A) - 2(v' / VK')A' + (A' / K')'. (39) 

Since Ii t- 0, the coefficients in the above polynomial in 
h + A must l'anish identically. The result is a set of 
differential equations which can be solved for A and v 
as functions of K, whereupon Eq. (38) can be integrated 
to yield h(a-iK). However, the full solution is not 
needed for our present purpose. All we need is the 
easily proven statement that constants bh b2 , b3 exist 
such that 

(40a) 

or 

(40b) 

Next, substitute (32a) and (32b) into the above Eqs. (40), 
then substitute in the expression (35) which was pre­
viously obtained for A, and recall that At- 0 since the 
twist is not zero. One finds that Eq. (40a) leads to a 
contradiction, and Eq. (40b) is satisfied by Eq. (35) if 
and only if CI == C2 = O. In the latter case, Y = 0, where­
upon Theorem I tells us the SNT is NT1• 

We next sketch the proof when b t- O. Equations (27), 
(30b), and (30c) imply 

3 OX-Iv + VI t- 0 

since bl)t- O. Solve Eq. (33) for h* and operate on the 
resulting expression with D. Then multiply through by 
(3 lix-1 

V + VI)2 and collect all terms on one side to obtain 
an equation of the form X == O. Take note of Eqs. (30) 
and the relation 

Y2D(x- l ) = - 2 ox-2 + ibx-t, 

which derives from Eqs. (25) and (27). It then becomes 
clear that X is a polynomial in x-I of degree 7, and the 
coefficient of each power of x-I must vanish since x'* O. 
It is sufficient to inspect the x-7 term; its vanishing 
implies b = 0, which contradicts our original hypothesis. 
Hence, 1/'hen b t- 0, there is no SNT which satisfies the 
premise of tile theorem. Q. E. D. 

Theorems I and II are based on two properties of NT I • 

Another property of NT 1 is that its 7z satisfies a 
quadratic equation of the form 1 h 12 + 1\ (h + h*) + A2 == 0 
where Aj and A2 depend at most on~. The following 
theorem is the converse statement for the SNT with a 
b == 0 Killing vector set. 

Theorem III: Consider any given SNT with a Killing 
vector such that b == O. Suppose there exist scalar fields 
Al and A2 which depend at most on ~ such that 

/h/ 2+AI (Jl+h*)+A2 =0. (41) 

Then the SNT is NTI . 

A detailed study of Eq. (31) when b = 0 and when Eq. 
(41) holds reveals that there are only three distinct 
possibilities for which the premise of the above theorem 
is true: 
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(1) Equation (32) is true, whereupon we have the b = 0 
part of Theorem II. 

(2) Equation (32) is not true. but V2 = 0, whereupon 
Eq. (31) implies Ih+AI 2 +v3=0. 

(3) Equation (32) is not true, and Vz *- 0, but 3/ix-l v 
+ VI = O. Then Eq. (31) implies Ih + A 12 + V3 

- (9/2)/ix-lvz = O. 

In any case, the proof of Theorem III proceeds along 
the same lines as the proof of Theorem II. The steps 
differ only in details from those of Eqs. (34)- (40). 
(For example, the solution of Vz = 0 has the same form 
as the expression for t:. in Eq. (35). The irrational 
numbers m and n are different, but that does not alter 
the course of the proof. ) 

When the premise of Theorem III does not hold, we 
are faced with the analysis of Eq. (31). This is a much 
more difficult task than the analysis of Eq. (41), but 
we have made some progress by using similar tech­
niques. For example, suppose b = O. 10 We first solve 
Eq. (31) for 

h* = C(h, At. Az, A3, A4), 

where At> Az, A3, A4 are simple polynomial expressions 
in the functions A, v, v; of~. Then we operate on the 
above with D and obtain [see Eq. (37)] 

. • ClC ac 
0=- 2ZK'h ah + Ai iM;' 

We solve the above for Ii and apply the equality D*h = O. 
The result which we obtain is expressible in the form 

P s = P 7(P3)1/2, 

where P 3, P 7, P s are polynomials in h + A of respective 
degrees = 3, ~ 7, ~ 9, with coefficients which are poly­
nomial expressions in the Ai and their first and second 
derivatives. Therefore, 

P 7 =PS =0. 

Upon equating the coefficients in the above polynomials 
to zero, we obtain a host of ordinary differential equa­
tions in the dependent variables Ai' Our immediate aim 
is to get relations between the functions A, v, Vi and to 
check these relations against Eqs (30). This is not a 
task which can be completed overnight since the differ­
ential equations are severely nonlinear. We have in­
tegrated two of them so far. 

In the next section we do not assume that a Killing 
vector exists. 

5. THE SUBCASE D*{3 = 0 AND 'Y 1= 0 

If a given STN is NTt> then Theorem I and Eq. (18) 
implies D*(3 = O. The converse is not necessarily true, 
and we are thus led to consider the possibility that there 
exists an SNT for which D*{3 = 0 and y *- O. In the re­
mainder of this section, we assume D*{3 = 0 and y*-O 
unless we explicitly state the contrary. 

Since {3 is an analytic function of 1: when D* {3 = 0, the 
transformation (11£) can be used to make (3 - 0 by an 
appropriate choice of F(S). However, we have found 
that it is wiser to hold this transformation in reserve, 
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since we may want to choose F(?;) to achieve simplifica­
tion of another field such as h + (3. 

Equations (9c) and (18) imply the existence of a real 
constant E such that 

y=- Et:. if D*(3=O. (42) 

E*-O if y *- O. Therefore, we can always select the scaling 
parameter (Y in Eqs. (11) so that E -± 1. However, we 
prefer not to do this now since another numerical value 
may suggest itself later. 

Equations (9c), (13), and (42) imply the existence of 
g(1:) such that 

lnt:. = - EK + g(1:) + g(~)*. 

Therefore, for any given (Y and F(1:), we can select f(~) 
in the transformations (llc) and (16) so that g - O. Then, 

t:. = exp( - EK). (43) 

As regards the dependence of t:. on 1: and 1: *, let ul (~) 
and Uz (1:) be any given solutions of the equations 

(44) 

Then, the general solution of Eq. (9b) is 

t:.-1!2 =ciju£Uj , (45) 

where {cij} is constant Hermitian matrix such that 

det{cij}= ~Eo 

It is apparent that the integrability conditions (21) and 
(23) greatly simplify when D*(3=O. That makes it easy 
to derive a fifth integrability condition from which P is 
completely eliminated. In the derivation, it is convenient 
to let 

(46) 

Divide Eq. (23) through by t:. z, operate with D*, and 
use Eqs. (6) and (7). Then, with the help of Eq. (21), 
we can eliminate P, DP, and D* P and obtain the new 
integrability condition 

IDHI2-4YIHlz=4iL:>(HH*-H*H). (47) 

From Eqso (9c), (17), (46), (47), and the equality 
D*(h + (3) = 0, one can prove that DH *- 0, which is a fact 
of some relevance in the sequel. 

Another useful relation is derived by noting that Eqs. 
(21), (23), and their complex conjugates are linear and 
homogeneous in DP, D* P, t:.i>, and P. The condition 
that the four by four determinant of their coefficients 
vanish yields after a suitable grouping of terms and 
factors: 

(48) 

where IV is an invariant under the group (10) and is de­
fined by 

W: = (3i/4L:»(D*H* /DH)H. (49) 

Equations (46) to (49) are also applicable when y = O. 
From Eq. (48), IV = 1 if the SNT is NT b and it can be 
proven that (conversely) W = 1 and D*{3 = 0 imply NT j • 

The conditions (47) and (48) still have to be fully ex­
ploited, and it remains an open question as to whether 
there exists any SNT such that D*{J = 0 and y *- O. One 
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significant point is made by the following theorem which 
is the D*f3 = ° analog of Theorem II. 

Theorem IV: For any given /( and h such that an SNT 
exists, D*f3 = 0, and y * 0, it follows that Eqs. (6) and 
(7) have exactly one linearly independent real solution P. 

We give only a rough sketch of the proof. Suppose 
Eqs. (6) and (7) have two linearly independent solutions. 
When D*f3 = 0, Eq. (23) and its complex conjugate are 
linear and homogeneous in DP, D*P, P. The condition 
that the rank of these equations be less than 2 yields 
two relations involving H, DH, and H. From these rela­
tions, the equation D*(h + (3) = 0, and Eqs. (9c) and (17), 
we can establish a contradiction with Eq. (47) (by the 
method used to prove DH* 0). The details are left for 
the reader. 

6. SUMMARY 

The working equations to be used in the analysis of 
the general SNT problem are Eqs. (4c), (6)-(8), (13), 
(14), (17), and the equations in Sec. 3. Also, one must 
keep in mind the possiblility of using the transformations 
given by Eqs. (11) to obtain simplifications at appropri­
ate points of the analysis. 

There are some worthwhile subjects for investigation 
other than the obvious one of searching for a new NT. A 
key question concerns the degree of arbitrariness in h 
corresponding to a given!1. For NT!> h is uniquely de­
termined2 by the choice of!1. How about other choices 
of !1? This question is applicable to any NT, whether or 
not it is SNT. 

Then there is the problem of generalizing Theorems 
II and IV. Can these theorems be extended to the set of 
all SNT (without the constraints that a Killing vector 
exist or that D*f3= 0) or, even better, to the set of all 
NT? 

As regards the set of SNT with Killing vectors, the 
key problem as we have formulated it is to crack Eq. 
(31) subject to Eqs. (25) and (30). Of course, there may 
not exist any new SNT with a Killing vector, but that 
remains to be proven and is a problem in itself. 

Then there is the especially interesting subcase of the 
set of SNT such that D*f3 = 0, where the key problem as 
we have formulated it is to crack Eqs. (47) and (48). 
Our own analysis of these equations has already been 
initiated, and we expect that other investigators will 
want to try their hand. An open question is that of a 
suitable relaxation of the ansatz D* f3 = 0; Eqs. (18) and 
(21) can be helpful in that venture. 

In closing, we stress that there are probably more 
elegant and more powerful techniques than any which we 
have devised, and it is our sincere hope that the pro­
blem will attract experts on such techniques, including 
some who are not currently working on the problem. 

APPENDIX 

For any SNT with a Killing vector K, we want to show 
that we can use the transformations given by Eqs. (10) 
and (11) to select our null tetrad and coordinates so that 
Eqs. (25) hold. The relevant null tetrad component 
forms of the Killing vector structural equations are 
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given, e. g., by Collinson. 8 By using these equations, 
we can establish that the function F(s) in the transfor­
mation (10) can be chosen, with CI = ° and g= 0, to yield 
a null tetrad such that 

H=i/f2. 
Lk=Lm=Lt= 0, 

(AI) 

(A2) 

where L denotes the Lie derivation with respect to K. 
We grant Eqs. (AI) and (A2), since the prooof does not 
differ significantly from similar proofs given by various 
people, e. g., Collinson. Then, from Eqs. (1), (4), and 
(A1), 

Lp = L T = LA = Lh = Lds = 0, (A3) 

From the relation, 2 

d 1\ k = k/\ (Ads + A*ds*) - 2iTds 1\ ds*, (M) 

and from Eqs. (2), (A2), (A3), and the vanishing of 
Ld 1\ k, we obtain 

k/\d(Lx)=o 

However, we are assuming nonzero twist. Therefore, 
the above equation implies d(Lx) = 0. Therefore, there 
exists a real constant b such that 

LX=b. (A5) 

This is the constant b which occurs in Eqs. (25). 

From Eqs. (4) and (A3), 

L T = (LI:::. - bt::.) exp(- X) = 0. 

However, I:::. = I:::. (s, s*) for SNT. Therefore, from Eqs. 
(A1), (24), and the above equation, there exists 0 = 0(0 
such that 

(A6) 

From Eqs. (13), we then obtain the existence of fJ. = fJ. (s) 
and A = A(O such that 

/( = A(~) exp(b17) + fJ. (1;) + fJ. (s)*, 

(A7) 

We use the transformation (16) to make fJ. = 0, where­
upon 

/( = A(i;) exp(b17). (A8) 

A careful analysis now reveals that the only residual 
freedom in our choice of a null tetrad and coordinates 
via Eqs. (10) and (11) is, in view of our choices (A1) 
and fJ. = 0, given by 

f(s)=V2c?;+/{o+ao if b=O, 

f(s) = (/{o + ib-1c>[ exp( - iV2bs) - 1) 

+ /{o + ao if b * 0, 

F=f3+iE1f, E:=0,1, 

(A9) 

where c, KO, ao, f3 are real parameters, and K-Kexp 
(- f3 - iE1f) under the residual group. 

From the Eq. (3) for k and the relation Lll = 0, we 
next prove that 

d(La - ba) = 0. 

Therefore, 
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La=ba+a, a=const. 

We can show that, under the residual group (for C'I = f3 
= E = 0) a - a + c. Therefore, by letting c = - a we arrive 
at 

(A10) 

From Eqs. (Ai), (A3), and (AlO), we then obtain (25g). 
Also, we already have Eqs. (25b) and (25c) via (A6) to 
(AS). 

The rest of the derivation of Eqs. (25) and (26) is 
fairly straightforward and is left for the reader. 

IFor a review and bibliography on algebraically special gravi­
tational fields with twisting rays, in the context of a review 
of exact solutions, see W. Kinnersley, in General Relativity 
and Gravitation, edited by G. Shaviv and J. Rosen (Wiley, 
New York, 1975), pp. 109-35. 

21. Hauser, J. Math. Phys. 19, 661 (1978). In this reference, 
TNT designated any type N twisting gravitational field. We 
are dropping the first T. Our signature is + 2, and k· In 

=t· t*= 1. 
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3This condition was discussed in Sec. 4C of Ref. 2. A spe­
cial case of the condition was given in Ref. 4. 

41. Hauser, Phys. Rev. Lett. 33, 1112 (1974). Equation (15) 
in this article has a typographical error: 1 + y2 should be in 
the denominator. Also, omit the factor 4 on the right side 
of Eq. (16). The coordinate nl;!tations (u, ~, p, (T) in this 
reference were replaced in Ref. 2 by (p, (T, ~ ,1)), and A was 
interchanged with A*. We follow Ref. 2. 

50ur coordinate notations are consistent with those of 1. 
Robinson and A. Trautman, Phys. Rev. Lett. 4, 431 (1960); 
Proc. Roy. Soc. Ser. A 265, 463 (1962). 

6This is a special case of a theorem which holds for any NT 
and which is proven in Ref. 2. 

7NTI as given in Ref. 4 was originally derived by computing 
the successive integrability conditions of the NT field equa­
tions for the special case >2 = i(?; + /;*). The details of the 
original derivation are given in Ref. 2. 

8No NT can have more than one Killing vector, as was shown 
by C. D. Collinson, J. Phys. A 2, 621 (1969). 

9If b '7 0, we can (of course) select a null tetrad k', m', t', 
t'* and a coordinate system p', 0', /:', 1;'* such that KCi.(a/ 
OxCi.) = 0/(1)' where 1)' = Im(v'"2/;'). However, that would involve 
a transformation outside the group (10), and the resulting 
>2' would be dependent on a' Ii. e., D' would not commute with 
a/ao'). There appears to be no advantage in that choice here. 

IOFor b '" 0 we have only completed some of the details of the 
analYSis of Eq. (31). 
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On the application of the generalized quantal 
Bohr-Sommerfeld quantization condition to single-well 
potentials with very steep walls 

Nanny Froman and Per Olaf Froman 

Institute of Theoretical Physics, University of Uppsala, Uppsala, Sweden 
(Received 7 December 1977) 

This investigation concerns some model potentials with very steep walls, for which the quantal 
Bohr-Sommerfeld half-integer quantization condition, if necessary generalized to correspond to modified 
phase-integral approximations of arbitrary order, and used without or with higher-order corrections 
included, can be used for obtaining, very accurately, the energy eigenvalues of the bound states, apart 
possibly from the lowest ones. One of the cases treated is the potential proportional to cot'x, for which a 
modified Bohr-Sommerfeld half-integer quantization condition yields the energy eigenvalues exactly. 
That the Bohr-Sommerfeld half-integer quantization condition is applicable to potentials with very steep 
walls may at first sight seem surprising in view of the well-known fact that the energy eigenvalues of a 
square-well potential with infinitely high walls are obtained exactly from the Bohr-Sommerfeld integer 
quantization condition, i.e., the quantization condition obtained by replacing (s + 1/2)7T by (s + 1)7T in the 
right-hand member of the Bohr-Sommerfeld half-integer quantization condition. From the study of a 
potential with horizontal bottom and linearly rising walls, which goes over into a square well when the 
inclination of the walls tends to zero, it can easily be understood, why the half-integer quantization 
condition is appropriate when the steep walls have a finite slope. 

1. INTRODUCTION 

The time-independent Schrodinger equation for the 
motion of a quantal particle with the energy E in a one­
dimensional potential V(z) is 

d21jJ 
dz"2+Q2(z)1jJ=0, 

where, with obvious notations, 

(1 ) 

(2) 

The eigenvalue problem of finding the bound states of 
this Schrodinger equation can be treated by means of a 
method for solving connection problems which has been 
developed by the present authors! (cf. also a further ex­
tension by Froman2). Using this method, we derived in 
Ref. 1 an exact quantization condition for the case of 
a single-well potential [cf. Eq. (10.20) in Ref. 1]. By 
deleting in this exact quantization condition a small 
term for which an upper bound was given, one obtains 
the Bohr-Sommerfeld (JWKB) half-integer quantization 
condition [cf. Eq. (10.22) in Ref. 1]. In Ref. 3 the ex­
tension of the treatment given in Ref. 1 to a new kind of 
higher-order phase-integral approximation (cf. also 
Ref. 3]. One arrives at a further generalization by 
tion was generalized correspondingly [d. Eq. (13) in 
Ref. 3)]. One arrives at a further generalization by 
modifying the arbitrary-order phase-integral approxi­
mations as described in Ref, 5 and on pp. 126-31 in 
Ref. 6. In this way one obtains the exact quantization 
condition (7' ) in Ref, 7, i. e., 

.!f () - 1.) F 11 (- "",z) 2 q z dz - (s + 2 7T + arg F (--)' 
A 11+oo,z 

s=0,1,2, ... , 

(3) 

where q(z) is given by Eqs, (12) and (13) in Ref. 5, and 
A is the contour shown in Fig. l(c) of Ref. 7. When E 

is an eigenvalue, the last term in (3) is, according to 
Ref. 7, independent of z, which may thus be chosen as 
an arbitrary point in the complex z plane. By negleding 
this term in (3) one obtains the Bohr-Sommerfeld half­
integer quantization condition, generalized to modified 
phase-integral approximations of arbitrary order, [cf. 
Eq. (24) in Ref. 7], 

iJ
A

q(z)dz=(s+i)7T, s=0,1,2,ooo. (4) 

The question of the applicability of this approximate 
quantization condition can thus be settled by the evalua­
tion of an upper bound or an approximate expression 
for the last term, L e., the correction term 
arg[F 11 (- 00, z )/ F 11 ( + 00, z )], in the exac t quantization 
condition (3). When the generalized classical turning 
points x' and x", i. e" the two relevant real zeros of 
Q~od(Z), are well separated, one can obtain an upper 
bound which is given by Eq. (15) in Ref. 7. Another 
upper bound, which is useful not only when x' and x" are 
well-separated but also when these points lie close to­
gether (whether the bottom of the potential well has ap­
proximately parabolic shape or not), is given by Eq. (18) 
in Ref. 7. In addition to those upper bounds for the cor­
rection term in the exact quantization condition (3) one 
can derive the approximate formula (23) in Ref. 7 for 
this term. In this way one obtains the approximate quan­
tization condition (25) in Ref. 7, which may at first 
sight seem to be an essential improvement of the gen­
eralized quantal Bohr-Sommerfeld quantization condi­
tion. However, as remarked in Ref. 7, it seems to be 
preferable to use a higher order of the last mentioned 
quantization condition, i. e., (4) in the present paper, 
instead of using (25) in Ref. 7. In this connection we 
remark that, as already mentioned in Ref. 7, condition 
(25) in Ref. 7, used in the first-order approximation, 
is the same as (4) in the present paper used in the third­
order approximation. 

The above-mentioned upper bounds for the errors in 
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the quantization conditions in Ref. 7, which are valid 
for unmodified as well as modified phase-integral ap­
proximations of arbitrary order, are expressed in 
terms of the so called JJ integral, which is to be per­
formed along paths with certain properties of mono­
tonicity. When the JJ integral pertaining to the first­
order phase-integral approximation (which is the same 
as the first-order JWKB approximation) is small com­
pared to unity, we can in general expect that the JJ inte­
gral will decrease rapidly with increasing order of the 
phase-integral approximations until, at a certain opti­
mal order, the!l integral starts increasing. Thus, if 
the first-order approximation works satisfactorily, the 
first few of the higher-order approximations should in 
general yield improved results. In many cases it is 
therefore sufficient to restrict the estimation of the 
appropriate JJ integral to that pertaining to the first­
order approximation. 

For a sufficiently smooth single-well potential one 
has, as a particular case of (4), when the unmodified 
first-order JWKB approximation is used, the approxi­
mate quantal BOhr-Sommerfeld half-integer quantiza­
tion condition 

(5) 

where x, and x" are the classical turning points. For a 
square-well potential with infinitely high walls, one 
finds instead that the energy eigenvalues are obtained 
exactly from the Bohr-Sommerfeld integer quantization 
condition 

(x" 
!.. Q(z)dz=(s+I)IT, 5=0,1,2,°'°' , x 

(6) 

As was pointed out in a letter from Prof. G. H. Wannier 
to the present authors it is therefore interesting and 
important to investigate which quantization condition 
one shall use when a continuous potential with very 
(but not infinitely) steep walls looks similar to a square­
well potential. For such a potential it seems plausible 
that the Bohr-Sommerfeld integer quantization condi­
tion (6) could be used for obtaining at least very rough 
approximations of the lowest energy eigenvalues, and 
from the results in Refs. 1 and 7 one may expect that the 
Bohr-Sommerfeld half-integer quantization condition 
(5), possibly modified, or its generalization (4), could 
be used for determining approximately the eigenvalues 
of the more highly excited bound states. 

In the following sections we shall consider some 
single-well model potentials with very steep walls. We 
shall restrict ourselves to considering the eigenvalues, 
but it would also be of interest to calculate quantal ex­
pectation values and matrix elements without the use of 
wavefunctions (cf. Refs. 8 and 9) and to investigate the 
accuracy of the normalized (cf. Ref. 10) phase-integral 
eigenfunctions, especially inside the classically allowed 
region. 

2. POTENTIAL PROPORTIONAL TO cot2z 
In this section we shall consider the eigenvalue prob­

lem for the one-dimensional Schrodinger equation when 
the potential is 

1824 

tz 2 2 
V(Z)=-2 Bcotz, 
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(7) 

where B is a positive constant, and the physical range 
of the variable z is 0 < z < 11. IntrodUCing instead of the 
energy E the quantity A by putting 

n2 

E=-2 A, (8) m 

we can write (2) as follows, 

Q2(z) =A - B cot2z. (9) 

To every given positive value of B there corresponds a 
discrete sequence of positive eigenvalues A for which 
the wavefunction tends to zero as z tends to + 0 and to 
1T- O. 

The exact solution of the Schrodinger equation in the 
case of the cot2 potential is considered in problem 12 
on pages 2 and 72- 4 in Ref. 11. From the treatment 
there one realizes that the condition that our differen­
tial equation (1), with Q2(z) given by (9), has a solution 
</! which is equal to zero when z == 0 and z = 11 is 

i. e. , 

A=[s +~ +(B+~)1I2P_B 

=! - B + [s + (B + t)1 /2][S + (B +~)1I2 + 1], 

s=0,1,2,···. 
(10) 

Evaluating the integral occurring in the left-hand 
member of (5) and (6), with Q2(z) given by (9), and using 
the exact expression (10) for the eigenvalues of A, we 
obtain 

;JxH 

Q(z) dz 

x' 

\ 

s +c., for all values of E, 

= s + 1 + o (rti), when B« ~, 

s + ~ +U(l/m), when B» 1" 

where c. = ~ + (B + i)I/2 - BI/2. 

(11) 

Thus, withs+c., wherec.=i+(B+{)1I2_BII2 , in the 
right-hand member, the first-order unmodified JWKB­
quantization condition would yield the eigenvalues exact­
ly. We note, however, that the quantity c., here obtained 
from known exact results, is particular for the poten­
tial under consideration, and no definite conclusion 
can be drawn as to the existence of such a quantity (in­
dependent of s) and its value for a general steep-wall 
potential. See also the discussion in Ref. 7. We further 
realize from (11) that for the first-order unmodified 
JWKB approximation the integer Bohr-Sommerfeld 
quantization condition (6) can be used for all possible 
values of the quantum number s when IE « 1, whereas 
the half-intc{.{cr Bohr-Sommerfeld quantization condi­
tion (5) (which is used in problem 18b on pages 4 and 
78 in Ref. 11) can be used for all possible values of 5 

when FB» 1. When a convenient modification is used, 
one can, however, as we shall presently show, obtain 
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the eigenvalues more accurately, and even exactly, by 
means of the half-integer Bohr-Sommerfeld quantiza­
tion condition. 

Let us now treat the eigenvalue problem for the po­
tential well (7) by using the previously mentioned modi­
fied phase-integral approximations of arbitrary order. 
According to (9) the function Q2(z) is symmetric with 
respect to the point z = 1T/2, and for Q~Od(Z) we shall 
choose a convenient function with the same symmetry, 
namely 

Q~Od(Z) =a - b cot2z, 

where 

b=B +{ (> ~), 

(12) 

(13) 

and a is a so far arbitrary constant, which is assumed 
to differ not too much from A. Because of (13) the 
phase-integral approximations are valid also at the 
points where cot2z = 00 and thus, in particular, at the 
end points z = 0 and z = 1T of the range of the physical 
variable z. The phase of Qmod(Z) is chosen to be positive 
on the upper lip of a cut along the real axis between the 
generalized classical turning points (cf. Fig. l(b) in 
Ref. 7). 

When phase-integral approximations of the order 
2N + 1 are used, and when we integrate along the closed 
contour A encircling the generalized classical turning 
points x' and x" (cf. Fig. l(c) in Ref. 7), we get (cf. 
Eqs. (8) and (7) in Ref. 10) 

N 

~ J q(z) dz = 6 L (2n.1> 
A n:O 

with 

L (2 n'l) 11 Y Q d 11 Q = 2" A 2. mod Z = 2" A Z 2. mod dz , 

where (see Eqs, (9a, b, c) and (6) in Ret 10] 

Zo=l, 

Z2=~EO' 

Z4 = - tE5, 
with 

(14) 

(15) 

(16a) 

(16b) 

(16c) 

(16d) 

Putting t = - cotz, and denoting by At the contour in 
the t plane which corresponds to the contour A in the 
z plane, we can write (15) as follows (note the direction 
of integration indicated in Fig. l(c) of Ref. 7) 

L (2 •• 1) = 11 Z Q dt 
2 2. mOd~ 

At 

+~f' 
A' 

t 

(17) 

where Ai is a contour encircling in the negative sense 
the part of the real t axis corresponding to the gen­
eralized classically allowed region, as well as the two 
points t=±i, which lie outside of the contour At. Using 
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(17), and noting that Qmod is approximately equal to 
- itVb for large values of it I (cf. Fig. 1 (b) in Ref. 7) 
and that Z 2n tends to the Kronecker symbol on.o as 
It 1- 00, we easily find that (17) can be written as 
follows (cf. (12)], 

L (2n+\) = h(a + b)1 12(Z 2.)t=.1 + ~7T(a + b)1 12(Z 2.)t:-1 

- 1TVb 0n.o, 

where (a + b)1 12 denotes a positive quantity. 

(18) 

To calculate expressions for the quantities (Z2n)t='1 
appearing in (18) we need formulas for (EO)t='1 [cf, 
(16a, b, c)]. Since 

d(cotz)/dz =- (1 + cot2z) = - (1 + t2) = 0 when t =± i, 

it follows from (12) that the derivative d2Q-:n~~2/ dz 2 is 
equal to zero when t = ± i. From the definition (16d) of 
EO and the formulas (9), (12), and (13) we therefore get 

(EO)t:.1 = (Q2Q~:~ ) t=±i = a: b ' (19) 

where 

(20) 

With the aid of (16a, b, c) and (19) it follows from 
(18) that 

L(I) =7T[(a +b)1/2 - Vb], 

L(3)=t7Te(a+bt l12 , 

L(5) =_ he2(a + bt3/2 • 

(21a) 

(21b) 

(21c) 

For the first-order JWKB approximation, modified 
according to (12) with (13), we find from (14), (21a), 
(13), and (20), when use is also made of the exact ex­
pression (10) for the eigenvalues of A, that 

~fr .. Qmod(z)dz = (a +b)1I2 - Vb 
r' 

= (A +B- e)t12_ (B +tJ'/2 

= {[s + t + (B +t)1I2]2 - e}1I2 - (B +tJ' 12 

=s +t +0 (-~~ 1 )1/2) S+2+ +. 
(22) 

if Ie I«s +t + (B +t)ll2, When the first-order JWKB 
approximation is modified according to (12) with (13), 
the half-integer Bohr-Sommerfeld quantization condition 
is thus approximately valid for all possible values of s, 
when B is sufficiently large. Furthermore, by compar­
ing (11) and (22), we realize that, for any (even very 
small) positive value of B, this quantization condition 
is more accurate than the unmodified (half-integer or 
integer) Bohr-Sommerfeld quantization conditions (5) 
or (6) for sufficiently highly excited states, i. e., for 
sufficiently large values of the quantum number s. 

Using the modification (12) with (13), we shall now 
evaluate the quantization condition (4) in the first-, 
third-, and fifth-order approximations, In the first­
order approximation the quantization condition (4) be­
comes (cf. (21a)] 

(23a) 
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which, with the use of (13) and (20), yields 

A [ ~ ( 1)112]2 ( e ) = s + ~ + B + 4 1 + TS+ ~ + (B + ~ - B. 

(24a) 

In the third-order approximation the quantization condi­
tion (4) becomes [cf. (21a, b)] 

7T[(a + b )112 - {b] + he(a + bt1l2 = (s +± )7T, (23b) 

from which, using (13) and (20), we obtain 

A =Hs +~ + (B +t)1/2)2 

(~) Hs +~ + (B +t)l 12]{[s +± + (B +~)112)2 _ 2e}1 12 

- B+}e 

In the fifth-order approximation the quantization condi­
tion (4) becomes [cf. (21a, b, c)] 

7T[ (a + b)1I2 - {b] + ±7Te(a + bt1l2 - irre2(a + bt3/2 = (s + ±)7T. 

(23c) 

When Ie I/[s +± + v'1ij2« 1 one can solve (23c) by ex­
pressing (a + b)l 12/[S +i + {b] as a power series in 
e/[s +} + {bj2. In this way one obtains 

(a +b)1/2/[s +± +{b] 

-1- k _ te2 
+0 ( __ e3 

) 
- [s+t+v'bF [s+t+vb]4 [s+±+/b]6 

and hence, with the use of (13) and (20), 

A =[s + ± + (B +t)1I2)2 [1 +0 ([s +± + (~+f)1/2]6) ] - B. 

(24c) 

Comparing (24a, b, c) and (10), we see that with in­
creasing order of the modified phase-integral approxi­
mations used [cf. (12) and (13)], the energy eigenvalues 
obtained from the quantization condition (4) rapidly 
approach the exact eigenvalues, provided that I e I 
«[s +± + (B +t)1 12)2 0 If, in particular, we choose 
e = 0, Leo, a =A - t [cf. (20)], and hence 

Q~od=A - t - (B +t) cot2z, (25) 

we realize that the quantization condition (4) yields the 
energy eigenvalues exactly in the first-, third-, and 
fifth- order approximations. This result is of particular 
interest, since the potential in question appears in con­
nection with the free rotation of diatomic molecules 
and the theory of Legendre functions. 

3. POTENTIAL PROPORTIONAL TO cosh (zlC) 

In this section we shall consider the potential 

li 2 z 
V(z)=-Bcosh-

2m C' 
(26) 

where Band C are positive constants, If one chooses 
these constants conveniently, a graphical representa­
tion of the potential V(z) for real values of z looks fair-
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B cosh (z/C) 

C,l C'O.l 
~ 

C'OI C,l 
10' 

I 

9;-

at 
71 
6-

5: 
4-

FIG. 1. Graphical representation of the function B cosh(z/C) 
for real values of z, when C Arcosh(l/B) is kept fixed and equal 
to 2, while C assumes various values. The draft of the figure 
was drawn automatically by means of a computer program 
written by T. Risch. 

ly like a square-well potential with infinitely high walls 
(cf. Fig. 1). Writing 

li 2 

E=-2 A, 
111 

and inserting (26) and (27) into (2), we get 

Q2(z) =A - B cosh(z/C). 

(27) 

(28) 

The constant C is simply a scale factor, the constant 
B is a measure of the strength of the potential, and the 
constant A is to be determined by solving the eigenvalue 
problem. Since we are considering a bound state in a 
potential well, the function Q2(z) must be positive when 
z is real and sufficiently small in absolute value, which, 
according to (28), is possible only when A > B. When 
this condition is fulfilled, one finds from (28) that the 
zeros of the func tion Q2 (z) are located at the points 

Z=±t+27TlICi, 1I=0, ±1, ±2,ooo, (29) 

where 

(30) 

The classical turning points, i. e., the zeros of Q2(z) 
which lie on the real z axis, are thus located at z =± to 

We shall use unmodified phase-integral approxima­
tions which means that we choose 

(31) 

By means of the definition (16d) of ~o and Eqs. (28) and 
(31) we obtain the formula 

€o(z) Q(z) 

[(B/A) cosh(z/C)]2 + 4 (B/A) cosh(z/C) - 5(B/ A)2 
= 16v0i:C2[1 - (B/A) cosh(z/C) ]5/2 

(32) 

For the particular potential under consideration in 

N. Fre>man and P.O. Fre>man 1826 



                                                                                                                                    

the present section it can be shown that, for the first­
order approximation, the JJ. integral in the estimate 
(15) in Ref. 7 is considerably larger than the Jl integral 
for a conveniently chosen path in the estimates (18) 
and (23) in Ref. 7. In the following we shall therefore 
use only the latter estimates. In these estimates the 
point z can be chosen to lie on the straight line Imz 
= C1T, which from (28) is seen to be an anti-Stokes line 
for the first-order phase-integral approximation, and 
the path for the Jl integral, with the correct properties 
of monotonicity, can be chosen to be this straight line 
except for very large values of I z I where the path shall 
approach the points - 00 and + 00 on the real axis. The 
value of the Jl integral along this path is, however, the 
same as the value of the Jl integral along the path 
z =x + iC1T from x = - 00 to x = + 00. Since cosh[ (x + iCrr)/ 
a:]=- cosh[x/C] we therefore find, with the use of 
(32), that the Jl integral corresponding to the first-order 
phase-integral approximation and the path described 
above is 

-f +~ 1[(B/A)COSh(X/C)]2-4(B/A)COSh(X/C)-5(B/A)2/ 
- _00 16CzJA[I+(B/A)cosh(x7C)]S!2 

x dx. (33) 

When B/ A «1, we can (for sufficiently small values of 
B/ A) obtain a very accurate value of the integral (33) 
by replacing in the integrand cosh(x/C) by .~ exp{x/C}. 
The result obtained after an elementary, straight­
forward calculation, in which further use of the assump­
tion that B/ A «1 is also made, is 

5 +2/5 0.3 
Jl(_oo,+oo)", 30Cv'A "" cTA' A»B. (34) 

The first-order Jl integral Jl (- 00, + 00) appearing in (18) 
and (23) in Ref. 7, with a conveniently chosen path of 
integration, is thus small compared to unity when 
A/B» 1 and CVA » 1. 

The smaller the constants Band C are, when 
C Arcosh(1/B) is kept fixed, the flatter will the bottom 
of the potential well become and the more square-well 
shaped the visual picture of the potential. In fact, when 
Band C tend to zero in such a way that C Arcosh(l/B) 
remains constant, the graphical representation of V(z) 
for real values of z approaches a square -well potential 
with infinitely high walls located at z = ± C Arcosh(I/B). 
For levels lying sufficiently low the energy eigenvalues 
can therefore be obtained from the Bohr-Sommerfeld 
integer quantization condition (6). (However, the gen­
eralization of the Bohr-Sommerfeld integer quantiza­
tion condition to higher-order phase-integral approxi­
mations can be expected to give erroneous results for 
these low-lying levels due to the large values of the 
higher derivatives of the potential in the regions in 
which the slope of the potential changes rapidly from 
almost horizontal to almost vertical. ) In spite of this 
fact it follows from (34) that for any positive values of 
Band C, however small, the Bohr-Sommerfeld ha{f­
integer quantization condition (5) becomes applicable 
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when A is suffiCiently large, i. e., when one considers 
sufficiently highly excited states. One can expect that, 
by USing higher-order phase-integral approximations, 3,4 

one should achieve a strong decrease in the value of the 
Jl integral and hence a corresponding improvement of 
the eigenvalue in question obtained by means of the 
quantization condition (4). 

In the left-hand member of the quantization condition 
(4) the contribution from the first-order approximation, 
with Q2(z) defined by (28) and the classical turning 
points z = ± t given by (30), is 

L (1) '" ~f Q(z) dz = ft [A - B cosh(z/C)]1 /2 dz 
A -t 

== 2 lot [A - B cosh(x/C) ]112 dx • (35a) 

To obtain the corresponding contribution from the third­
order approximation: we use (32), note that ~ fA can be 
replaced by t::+~ig, make the substitution z =x +iC1T, 
note that cosh[ (x + iC1T)jC] = - cosh[x/C] and that the 
integrand is an even function of x, getting 

L (3) '" ~ f iEo(Z) Q(z) dz = 16dz
YA 

A 

f ~ [(B/A) cosh(x/c)]2 - 4(B/A) cosh(x/C) - 5(B/A)2 d 
X [1 + (B/A) cosh(x/C)]5!2 x. 

o 
(35b) 

When B/A is sufficiently small, one can easily calculate 
the integrals in (35a) and (35b) very accurately by re­
placing cosh(x/C) in the integrands by i exp{x/C}. After 
elementary calculations, in which further use is also 
made of the assumption that B/ A « 1, one obtains 

L(1)""2CVA (InS: -2) , A»B, (36a) 

(3) ___ 1_ 
L --12CYA' A»B. (36b) 

It is seen that the value obtained in (34) for the first­
order Jl integral is only somewhat larger than the abso­
lute value of the third-order contribution L (3) obtained 
in (36b). Thus we realize that the Jl integral in question 
yields a realistic upper bound for the error involved 
in the first-order Bohr-Sommerfeld half-integer quan­
tization condition. 

We shall conclude this section by reporting the re­
sults of some numerical calculations performed some 
years ago by A. Nordlund (unpublished) which illustrate 
the accuracy obtainable by means of the quantization 
condition (4) when various orders of the phase-integral 
approximations are used. These calculations were 
performed for the parameter values B = 1/ cosh20 
""0.12xI0-9 and C=-to (cL Fig. 1), and the results 
are shown in Table 10 The exact eigenvalues, also given 
in Table I, were calculated by means of a modification 
of a program which had originally been written for quite 
a different purpose and could not be used for calculat­
ing the eigenvalues for even values of the quantum num­
ber s. This is the reason why the results in Table I 
have reference to only odd values of s. Table I shows 
clearly the great accuracy of the half-integer Bohr­
Sommerfeld quantization condition [and in particular 
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TABLE I. Eigenvalues A for the Schrodinger equation corresponding to Q2 (z) = A - B cosh(zIC) with B = l/cosh 20"" O. 12 X 10-9 and 
(=0.1 (see Fig. 1). 

Approximate eigenvalues A calculated by means of 
the quantization condition (4) for various orders Exact eigenvalues A 

of the phase-integral approximations calculated by a 
s 1st order 3rd order 5th order 

1 1.4 1,7856 1. 93 
3 6,7 7,03 7.066 
5 15.3 15,61 15,627 
7 27.0 27,315 27.326 
9 41.7 42.004 42.0107 

11 59.2 59.576 59.5804 
13 79.6 79.954 79.9570 
15 102.8 103.076 103.0783 

its generalization (4) when higher-order phase-integral 
approximations are used] for the excited states, As 
has been shown in calculations performed by A, 
Hokback (unpublished) all figures in the columns cor­
responding to the first- and third-order approxima­
tions in Table I can also be reproduced by approximat­
ing the first- and third-order contributions in the left­
hand member of the quantization condition (4) by the 
simple analytical expressions (36a) and (36b), respec­
tively. The values of Band C chosen in the calculations 
now described are not small enough that the integer 
Bohr-Sommerfeld quantization condition (6) be valid 
for the first few lowest energy levels. One can, how­
ever, achieve this situation by choosing still smaller 
values of Band C connected by the relation 
CArcosh(l/B)=2, i.e., B=l/cosh(2/C); cf. Fig. 1. 

4. POTENTIAL WITH HORIZONTAL BOTTOM AND 
LINEARLY RISING WALLS 

It is illuminating to discuss also another example of 
a potential with steep walls, namely the potential 

V(x) == 

n2 

- - /3(x + a) , when x '" - Ci , 
2m 

0, when - QI '" X '" QI , 

n2 
- /3(x- a) when Q' "'X, 
2m ' 

(37) 

where QI and /3 are positive constants. Here we write 
X instead of z to emphasize that the whole discussion 
of this potential will be made on the real axis of the 
complex z plane. The potential (37), which is depicted 
in Fig. 2, approaches a square-well potential with 
infinitely high walls when /3 - + 00. For the Schrodinger 
equation corresponding to the potential (37) and the 
energy 

(38) 

the solution vanishing at x = + 00 is, when x?, QI, 

proportional to the Airy function Ai (/3113(x - QI - k 2/ ;3). 
When - a '" x ,,; Ci the solution is a linear combination of 
~he functions sin(kx) and cos(kx). The ratio of the co­
efficients of these functions is obtained by matching at 
x = a the logarithmic derivative of the linear combina­
tion to the logarithmic derivative of the Airy function. 
By noting that wavefunctions of odd parity are equal 
to zero at x = 0, while wavefunctions of even parity 
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7th order 9th order numerical method 

1. 7862 
7,11 7.21 7,059 

15,63() 15.646 15,632 
27,3283 27.3301 27,3290 
42.0119 42,01236 42,01242 
59,58091 59.58108 59.58118 
79.95726 79.95734 79.95738 

103.0785 103,0785 103,0785 

have their derivative equal to zero at x == 0, one then 
obtains the exact quantization conditions 

\ Ai(- y2) 
, y Ai'(- y2) 

tan(lw) =') 
, 1 Ai'(_y2) 
- y Ai(- y2) 

(odd parity), 

(even parity), 

If, for fixed energy E, i. e., for fixed fl, we let 
/3 - + 00, i. e., y - + 0, the right- hand members of 

(39a) 

(39b) 

(40) 

(39a, b) tend to +0 and - c<J, respectively, and the quan­
tization conditions (39a, b) therefore give 

2ak=(s+1)7T, s=O,1,2, ••• , 

i. e., (39a, b) transform into the Bohr-Sommerfeld 
integer quantization condition (6) pertinent to the square­
well potential approached by the potential (37) as 
/3- +00. 

v(x) 

I 

----~----------~--------~-L------_.x 
-I -~ 

FIG. 2. Graphical representation of the potential defined by 
(37). The classical turning points corresponding to the energy 
E=Ti 2k2/!:2m) are denoted by ±t, 
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If, however, the energy E is not kept fixed as 
(3 - + 0() but is made so large that y» 1, the asymptotic 
expression (with only the dominating term retained) 
for the Airy function can be used in the quantization 
conditions (39a, b), and in this way the Bohr-Sommer­
feld half-integer quantization condition (5) for the po­
tential (37) is obtained. 

Thus, if the walls of the potential (37), depicted in 
Fig. 2, are very steep, the eigenfunctions pertaining 
to the low-lying bound states are very close to zero at 
x = ± a, and the quantization condition is approximately 
the same as that for a square-well, and hence the 
Bohr-Sommerfeld integer quantization condition (6) is 
applicable. When the energy increases, the distance 
from the point + a or - a, where the slope of the po­
tential changes discontinuously, to the closest classi­
cal turning point (+t or - t, respectively) increases 
and finally becomes so large that the appropriate con­
nection formula for the first-order JWKB approxima­
tion of the wavefunction can be used at x = ± a. In this 
way one easily understands the reason why the half­
integer Bohr-Sommerfeld quantization condition (5) 
becomes applicable for sufficiently excited bound states 
of the potential (37), however steep the walls may be 
(cf. Fig. 2), if only the steepness is finite. In a way one 
can therefore say that for the very highly excited states 
there is no continuous transition from a potential with 
{3 finite but very large to a potential with (3 infinite. 
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On phase-integral quantization conditions for bound states 
in one-dimensional smooth single-well potentials 

Nanny Fr6man and Per Olot Fr6man 

Institute of Theoretical Physics. University of Uppsala. Uppsala. Sweden 
(Received 7 December 1977) 

Previous work by the present authors on phase-integral quantization conditions for single-well potentials is 
extended and generalized. Exact as well as approximate quantization conditions are considered and 
investigated more fully than previously. Not only their necessity but also their sufficiency is treated. An 
improvement of the estimate of the error of the generalized quantal Bohr-Sommerfeld quantization 
condition is also given. 

1. INTRODUCTION 

In the first few chapters of a previous publication1 the 
present authors worked out a general method for handling 
connection problems for the first-order JWKB-approxi­
mation and modifications of it. In chapter 10 of Ref. 1 
this method was used for proving that certain quantiza­
tion conditions, obtained in exact form, are necessary 
for the existence of bound states. 

In Ref. 2 N. Froman showed that the sum of the odd­
order terms in the usual JWKB-expansion can be ex­
pressed in terms of the sum of the even-order terms, 
and thus she obtained a formal solution of the time­
independent Schrodinger equation containing only the 
even-order terms. By truncating the sum of the even­
order terms occurring in the amplitude as well as in 
the phase of this solution, she then obtained higher­
order phase-integral approximations that, in contrast 
to the higher-order JWKB-approximations, can be 
handled by the method developed in Ref. 10 The quanti­
zation conditions given in chapter 10 of Ref. 1 are there­
fore valid also for the new type of higher-order phase­
integral approximations, The quantal Bohr-Sommerfeld 
quantization condition, with higher-order corrections 
included, was given explicitly in Ret 2. Some general 
properties of the above-mentioned higher-order phase­
integral approximations are discussed in another paper 
by No Froman. 3 The general problem concerning modi­
fications of these higher-order phase-integral approxi­
mations, useful in situations in which the unmodified 
approximations would fail or be less convenient than 
modified ones, was treated in two papers by the present 
authors (see Ref. 4 and pp, 126-31 in Ref. 5), 

In the present paper, which is based on the use of 
these phase-integral approximations of arbitrary order, 
we present an extension of the above-mentioned results 
on the bound-state problem. We shall thus assume that 
q(z) is defined as in Ref, 4 [cf. Eqso (12), (13), (7), 
(3), (4a) in Ref, 4]. This function q(z) is approximately 
equal to Qrnod(z) except in the neighborhood of the zeros 
of Q~od(Z). At those points the function q(z) has singu­
larities, and in the neighborhood of each such singularity 
q(z) has a certain number of zeros (cf. Ref. 3). Since 
we shall consider an ordinary quantal bound-state prob­
lem, the functions Q2(z) and Q~od(Z) are assumed to be 
real on the real axis. We shall frequently refer to 
equations in Ref. 1, assuming, however, that q(z) is 
defined as stated above. To make the paper more easily 

readable we have therefore in an Appendix collected 
those formulas from Ref. 1 which we refer to. It is 
important to note that for the validity of the treatment 
given in chapter 10 of Ref. 1 it is sufficient to assume 
that the functions q(z) and Q(z) are similar in shape 
except in certain regions in the neighborhood of the gen­
eralized classical turning pOints (1, e., the zeros of 
Q~Od on the real axis) or possibly existing Singularities 
of Q2(z), where the two functions q(z) and Q(z) differ 
considerably. The phase of the function q1!2(z) is chosen 
such that suffiCiently far away from the generalized 
classical turning points the values of q1/2(z) on the dif­
ferent parts of the real axis are those indicated in Fig. 
10.1(b) of Ref. 1 [cf. our Fig. l(b)]. For the single-well 
potential under consideration and real values x of z, the 
function U7(X) is given by Eqs. (lla, b, c) in Ref. 2 with 
the contours of integration depicted in Fig. 1 of the pres­
ent paper. As a consequence, the integral n:' Iq(x) Idx, 
occurring in the formulas in chapter 10 of Ref. 1, shall 
be replaced by ~ I Aq(Z) dz, where A is the contour de­
picted in Fig. 1 of the present paper. When these 
changes are assumed to have been made, the equations 
in Ref. 1, to which we shall refer, become valid for 
the modified phase-integral approximations of arbitrary 
order used in the present paper. As in chapter 10 of 
Ref. 1 the eigenvalue problem is formulated for the 
interval (- 00, + 00), but the treatment applies also to 
other ranges of the physical variable z. Thus, to treat 
a radial problem we simply replace - 00 by + 0 in our 
formulas. 

In passing we remark that from (10. 8a, b) in Ref. 1 it 
follows that, to a given value of E there corresponds at 
the most one eigenfunction (except for an arbitrary con­
stant factor). This is in accordance with the well-known 
fact that one-dimensional potentials with certain proper­
ties of regularity have nondegenerate bound states. 

The present paper provides a deeper treatment of what 
is discussed in Ref. 1 from the middle of p. 106 to the 
end of chapter 10, 

2. THE EXACT QUANTIZATION CONDITION 
F'2 (-00,+00)=0 

Up to the middle of p. 106 in Ref. 1 it has been 
shown that the condition (10.13) in Ref. 1, 1, e., 

F 12 (_00,+oo)=0, (1) 

is necessary for the existence of a bound state. (Of the 
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FIG. 1. (a) For the case of a bound state in a general single­
well potential the figure shows the qualitative behavior of 
V IOOd(X) - E, where V rrod(X) , called the modified potential, is 
related to Q~d(X) according to the formula Q~d(X)= (2m/lf2)[E 
- Vrnod(x)], (h), (c) Contours of integration on the Riemann sur­
face to be used for obtaining w(x). The parts of these contours 
which lie on the second Riemann sheet are indicated by dashed 
lines. The phase of Q.Vo~(x) to the right of x" on the real axis 
of the first Riemann sheet is indicated. The heavy line indi­
cates a cut. (d), (e) The path of integration in the complex z 
plane for the J.l integral in the estimates (15) and (18), respec­
tively. The arrows indicate the directions in which 
I exp[ijZq(z)dz] I increases (in the nonstrict sense). 

two proofs given in Ref. 1, the one given immediately 
below Eq. (10.13) in Ref. 1 is to be preferred.) 

We shall now show that the above quantization condi­
tion (1) is also sufficient. Let us therefore suppose that 
this condition is fulfilled for a certain value E of the 
energy, and let us select a special solution 1J;(z) of the 
Schrodinger equation for which at (+ co) = 0 but a2( + co) 
* O. For this special solution the formulas (10. 8a, b) in 
Ref. 1 are valid. Since the condition (1) above is 
assumed to be fulfilled, it follows from (10.8a) in Ref. 1 
that at (- 00) = o. As a consequence of this it follows, 
according to pp. 104-105 in Ref. 1, that the limit 
a2(- 00) exists and is finite and that at(z) and a2(z) are 
also given by formulas which one obtains by replaCing 
+ 00 by - 00 in (10. 8a, b) in Ref. 1. Obviously a2(- 00) * 0, 

1831 J. Math. Phys., Vol. 19, No.9, September 1978 

for otherwise the solution lJ;(z) would be identically 
equal to zero, in contradiction to the definition of this 
function. In the same way as on p. 105 in Ref. 1 we now 
obtain (10. 12) in Ref, 1 and the corresponding formula 
with a2(+00) replaced by a2(- co). From these two for­
mulas it follows that for the special solution lJ;(z) con­
sidered, the integral f:: 1 <P(x) 12 dx is finite, provided 
that the integrals L,,,lh(x)1 2dx and r~lf2(X)12dx are 
both convergent, Thus <P(z) is the wavefunction of a 
bound state, and we have proved that (10,13) in Ref. 1, 
i, e" (1) above, is also a sufficient condition for the 
existence of a bound state. 

Let us note that if the modified phase-integral func­
tions of arbitrary order defined by Eqs, (lla, b), (12), 
(13) in Ref. 4 were exact solutions of the Schrodinger 
equation (cf, pp, 11 and 110-112 in Ref. 1), the quan­
tities E and IJ. defined by Eqs. (18) and (19) in Ref. 5 
would be identically zero, and the matrix F(z, z 0) would 
be exactly a unit matrix for all values of z and z 0, and 
in particular we would have Ft2 (_00, +00)==0. Since this 
relation would be true for all values of E, the quantiza­
tion condition (1) would be void of any information. This 
situation, however, cannot arise for the kind of problem 
which we are considering, for if Fd- 00, +00) were equal 
to zero for every value of E, the boundary condition that 
at (+ 00) == 0 and a2( + 00) * 0 would imply that also at (_ 00) 
== 0 and a2 (- co) * 0, and hence that bound states would 
exist for all values of E, which is impossible for the 
eigenvalue problem under consideration, Thus the 
quantity E, defined by Eq, (18) in Ref, 5, cannot be 
identically equal to zero in a bound-state problem, when 
Q~Od(Z) is chosen appropriately so that the corresponding 
modified potential has the properties shown in Fig. 1 (a) 
of the present paper, which means that q (z) has the 
properties shown in Fig. 10,1 of Ref, 1 with the altera­
tion that for phase-integral approximations of higher 
order the function q (z) has not simple zeros but higher­
order poles at the generalized classical turning points 
x' and x", which by definition are the real zeros of 
Q~Od(Z ). 

Letting z be an arbitrary point in the region of the 
complex z plane under consideration, we obtain, because 
of the multiplication rule (3,27) in Ref. 1, the identity 

F 12 (_oo,+oo) 

=FI1 (= oo,z)Ft2 (z, +00)+Ft2 (- oo,z)F22 (z, +00), (2) 

which by means of the inversion formula (3,20) in Ref. 1 
can be written 

The quantities appearing in this identity exist and are 
finite according to (4. 5a, b) in ReI, L 

By means of the identity (3) the necessary and suffi­
cient condition (1) for the existence of a bound state can 
be written [cf. p. 106, line 8 from above in Ref. 1 
together with the inversion formula (3.20) in Ref. 1] 

F l1 (- oo,z) _ F 12(- oo,z) 
Fu(+OO,z) - F t2 (+00,z)' 

N. FrOman and P.O. FrOman 
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This quantization condition can also be obtained from the 
formulas [cr. pp. 105-106 in Ref. 1 and the discussion 
below (1) in the present paper] 

F 12 (z, - co)a2(- co) =a1 (z) 

=F 12 (z, + co)a2( + co), 

F 22 (z,- co)a2(- co)=a2(z) 

=F22 (z, + co)a2(+ co), 

and the inversion formula (3,20) in Ref, 1. 

3. THE GENERALIZED QUANTAL BOHR­
SOMMERFELD QUANTIZATION CONDITION 
AND CLOSELY RELATED QUANTIZATION 
CONDITIONS 

Let Xo be a point on the real axis in the classically 
allowed region, lying far enough from the generalized 
classical turning points x' and XU to be outside the 
regions around those points in which there are zeros of 
q(z), when higher-order phase-integral approximations 
are used. With the phase of Q!!~(x) chosen as shown in 
Fig. 1(b) in the present paper (cf. Fig. 10.1(b) in Ref. 
1, we then get from (5.9a) in Ref. 1 the symmetry 
relations 

= i exp[2Imw(xo) - 2i Rew(- co) ]Fft(- "", xo), (5a) 

= - i exp[2Imw(xo)- 2iRew(+ co)]Fft(+co,xo), (5b) 

which are valid irrespective of the choice of the lower 
limit in the integral (3.3) in Ref. 1 defining w(z). If, 
for instance, this choice is made such as to correspond 
to x' being the lower limit in the integral when the first­
order phase-integral approximation is used, the formu­
las (5a, b) become the same as (30a, b) in Ref. 6. Sub­
stituting (5a, b) into (3) with z chosen equal to xu, we get 
the identity 

F 12 (- co, +co)=iFf1(- co,xO)Fl1 (+oo,xo) 

xexp[2Imwh) - 2iRew(- co)] 

x {l+[Fl1 (-oo,X O) !I(Fl1 (-oo,X Q»)*] 
F l1 (+oo,xoj/ \Fl1 (+oo,xo) 

x exp{- 2i[Rew (+ (0) - Rew (- oo)]} 1 
which, by the use of Eq. (3.3) in Ref. 1, defining w(z), 
and the fact that the analytical function q(z) is real in the 
interval (x', x") of the real axis, can be written as 
follows [cf. Eq, (31) in Ref. 6], 

xexp[2Imw(xo) - 2iRew(- 00)] 

x {1- exp [- 2i(~.t q(z)dz-%-rr 
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_ arg Fu(- oo,xo~)J}, 
F l1 (+ OO, xo 

(6) 

where A is the contour defined in Fig, 1 (c) in the pres­
ent paper. We emphasize that (6) is an identity, which is 
valid for every possible value of E provided that Xo is 
located on the real axis between the points x' and x", 
and that the phase of Q~~(x) is chosen as described 
above, Inserting this identity into the quantization con­
dition (1), and noting that F l1 (- oo,xo) and F l1 (+ "",xo) are 
different from zero, as is seen from the estimate 
(6, 13a) in Ref. 1, valid when the appropriate IJ. integrals 
are small compared to unity, we get 

1 r () (l) F l1 (- OO,xo) 
"2 q z dz = s + 2 7T + arg F ( ) , 

. A 11 +oo,xo 
(7) 

where s is an integer which, because of the positive na­
ture of Qmod(X) in the classically allowed region of the 
real axis and the smallness of arg[F11 (- co,xo)/ 
F 11 (+ "", x 0)], cannot assume negative values. Since the 
quantization condition (1) is both necessary and suffi­
cient, so also is the quantization condition (7), as is 
obvious from the derivation of it given above. Special­
izing (7) to the first-order phase-integral approxima­
tion, we obtain, because of the inversion formula (3,20) 
in Ref. 1, the quantization condition (10.20) in Ref. 1 
with z =xo' 

From (3,18), (3,13), and (3,3) in Ref. 1 it follows 
that 

:z F(z, z 0) =tiE(z )q(z) 

x C :XP[2iW(z)] 

exp[- 2iW(Z)]) 
F(z ,zo). 

-1 
(8) 

Using this formula and the formulas (3.20) and (3.27) 
in Ref. 1, and recalling also (4. 5a, b) in Ref. 1, we ob­
tain the identities 

and 

Since it can be assumed that E(Z) is not identically equal 
to zero (cf. Sec. 2 of the present paper), it follows from 
(9a) that if, and only if, the quantization condition (1) is 
fulfilled, we have 

.i.. F l1 (- oo,z) -0 
az F jj (+ 00, z) -

(10) 

for every value of z. The validity of (10) is therefore, 
like condition (1), a necessary and sufficient quantiza­
tion condition, Since this quantization condition means 
that the quotient F 11 (- 00, z )/F 11 (+ 00, z) is independent of 
z, we can, letting z - + 00 [cr. (4.5a) in Ref. 11, write it 
as 

F 11(- oo,z) ( ) b.t 
F ( ) 

=Fl1 _00,+00, z ar 1 rary, 
11 +"",z 

(lla) 

N. FrOman and P.O. FrOman 1832 



                                                                                                                                    

or, inverting the quotient and letting z - - 00, as 

F 11 (+ 00, Z ) F ( ) b' 
F ( ) 

= 11 +00,_ 00, z ar Itrary. 
t1_ co ,z 

(llb) 

The quantization conditions (lla) and (llb), which have 
here been obtained as both necessary and sufficient 
quantization conditions, are seen to agree with the quan­
tization conditions (10. 14b) and (10. 14a), respectively, 
in Ref. 1, when use is made of the inversion formula 
(3.20) in Ref. 1. In Ref. 1 we proved only the necessity 
of these quantization conditions, 

According to (10. 17b) in Ref. 1 we have a symmetry 
relation stating that 

F 22(- 00, + 00) exp{i[i fA q(z) dz - i1T]} is reaL (12) 

Using (3.20) in Ref. 1, we can write (12) as 

(12') 

where s is an unspecified integer. Combining this sym­
metry relation with the quantization condition (llb), we 
obtain the necessary and sufficient quantization condition 
[cf. (10.20) in Ref. 1 and (13) in Ref. 2] 

If ( ) ') F l1 (- oo,z) -2 q z dz =(s +2 1T+argF ( )' 
l1+ oo ,Z 

A 

s =0, 1,2"", (7') 

where z is any point in the complex plane. The reason 
why s in (7') is restricted to nonnegative integers is that 
Qmod(x) is positive in the classically allowed region and 
that larg[Fl1 (-oo,z)!Fl1 (+oo,z)]1 «1. We remark that 
one can also derive the quantization condition (7') by 
combining the quantization conditions (7) and (10). We 
emphasize that (12') is a symmetry relation, i. e., an 
identity valid for any vaiue of E, while (7) and (7') are 
quantization conditions, by means of which the energy 
eigenvalues can be determined. 

Excluding for a moment cases in which the generalized 
classical turning points x' and x" lie close together, we 
shall estimate the last term in (7), i.e., the last term 
in (7') with the point z chosen as a point Xo on the real 
axis between x' and x" (cf. Fig. 1). Since the points x' 
and x" are well separated, there exist paths from Xo 

to po, proceeding as shown in Figs. 6.l(b) and 6.2(b) 
in Ref. 1, for which jJ.(± 00, xo) «1, where in our present 
treatment jJ. is defined by Eqs. (19), (18), and (16) in 
Ref. 5. As has been mentioned in chapter 3 of Ref. 1, 
the diagonal elements of the F matrix do not depend 
on the choice of the fixed lower limit in the integral 
(3.3) in Ref. 1 defining w(z). Independently of how this 
lower limit of integration has been chosen, we can 
therefore use the estimate (6.13a) in Ref. 1, general­
ized to the modified phase- integral approximations of 
arbitrary order (cf. Ref. 4 and pp. 126-31 in Ref. 5), 
i.e. (cf. p. 107 in Ref. 1), 

IFtt (±co,xo)-II,,;jJ.(±oo,xo) 

+ higher powers of jJ.(±oo,xo), (13) 

where x' <xo <x", and Il(± oo,xo) denotes the Il integral 
[cf. Eqs. (19), (18), and (16) in Ref. 5] from Xo to 
± 00 along such a path as is shown in our Fig, 1 (d) (cf. 
also Figs. 6.1(b) and 6. 2(b) in Ref. 1]. From (13) it 
follows that 
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+ higher powers of Il(_co, +00) 

and hence 

\ 
argFl1 (- 00, x o) I,,; IJ.(- 00, + 00) 

F l1 (+ oo, xo) 

+ higher powers of Il(- 00, + 00), 

where Il(- 00, + 00) denotes the Il integral from - 00 to 

(14) 

(15) 

+ 00 along a path, the two parts of which, namely those 
from - 00 to Xo and from Xo to + 00 possess the properties 
of monotonicity described in Sec. 6.3 of Ref. 1, For this 
jJ. integral the integration is thus to be performed along 
a path in the complex z plane proceeding as shown in 
Fig. l(d) of the present paper. The radii of the two 
semicircles in this figure shall be chosen such that 
I exp[if'q(z) dz] I has precisely two minima on the path 
of integration from - 00 to +00 [cf. Fig. l(b) in the 
present paper]. 

If the generalized classical turning points x' and xl! 
are not well separated, which is the case for the lowest 
energy eigenstates, we cannot expect the quantity 
Il (- 00, + 00), occurring in the right-hand members of (14) 
and (15), to be very smalL Therefore, we shall now 
also derive another estimate for the correction term in 
the exact quantization condition (7'), which is useful 
both when x' and xl! are well separated and when those 
points lie close together, whether the bottom of the po­
tential well has an approximately parabolic shape or not. 
We shall thus estimate, and even approximately calcu­
late, the last term in (7') by choosing the point z appear­
ing there in a different way than in the previous esti­
mate, i. e., (15). Considering, for the actual single­
well potential, the picture of the Stokes' and anti­
Stokes' lines corresponding to the first-order approxi­
mation (cf. Fig. 1 in Ref. 7), and recalling that far 
away from x' and x" these Stokes' and anti-Stokes' lines 
are almost the same as those corresponding to higher­
order phase-integral approximations, we realize that 
for a single-well potential we can always, for any con­
veniently chosen order of approximation, choose z such 
that there exists a path from z to - 00 as well as a path 
from z to + 00 along which I exp[ij'q(z) dz] I increases 
monotonically in the direction from z to ± 00 as shown 
by the arrows in Fig. l(e). We can therefore use the 
basic estimate (4.3a) in Ref. 1 with M = 1, generalized 
to modified phase-integral approximations of arbitrary 
order (cf. Ref. 4 and pp. 126-31 in Ref, 5), getting 

/F l1 (±oo,z)-l/,,;Hexp[Il(±oo,z)]-l}, (16) 

where I.d± 00, z) denotes the jJ. integral along the path 
of monotonicity from z to ± 00 [cf. Fig. 1 (e)]. When 
Il(± oo,z)« 1 it easily follows from (16) that 

IF u (- oo,z) -1 I,,; ill(- 00, +00) 
F l1 (+oo,z) 

+ higher powers of Il(_oo,+oo) 

and hence 

\
arg FI1 (-OO,z)I,,;l.Il(_OO +00) 

F l1 (+oo,z) 2 , 

N. Froman and P.O. Froman 
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+ higher powers of J.L(_OO, +00), (18) 

where J.L(- 00, +00) now denotes the J.L integral along a 
path [cf. Fig. l(e)] from - 00 via z to + 00, on which 
lexp{ifZq(z) dz} I has a single minimum [at the point z 

appearing in the last term of (7')], 

In the same manner as (15), formula (18) gives only 
an upper bound for the correction term in the exact 
quantization condition [(7) or (7')]. We can, however, 
make the derivation of (18) somewhat more sophisticated 
such that we obtain not only an upper bound but an 
approximate formula for the quantity in question. In 
fact, modifying the derivation of (16) slightly by also 
taking explicitly into account the second term in the 
series defining F l1 (± oo,z) (cf. pp. 18, 26, and 27 in 
Ref. 1), we obtain 

IF ll (± oO,z) -1- 'hr'" E(z)q(z)dz I 
Z 

+ higher powers of J.L (± 00, z). (19) 
From this formula and the definition of the J-l integral 
[cf. Eq. (19) in Ref. 5] it follows that 

~11~- oO,z~ =l-iij+«> E(z)q(z)dz 
11 +oO,z 

-"" 

(20) 

and hence 

(21) 

where J.L(- co, +00) is the same J.L integral as in the esti­
mates (17) and (18) [cf. Fig. l(e)], and the symbol 
O(J.L2) is used to denote a quantity which is at the most 
of the order of magnitude of J.L 2• Since Q2(Z) and Q~od (z) 
are assumed to be real on the real axis, it follows from 
Eq. (3) in Ref. 4 that EO(Z) is real on the real axis, and 
from Eq. (7) in Ref. 4, with Yo = 1, and Eq. (4a) in Ref. 
4 it then follows that the quantities Y 2n are real on the 
real axis. From Eqs. (16) and (18) in Ref. 5 one can 
then conclude that q(z )/Qmod(Z) and E(Z) are real on the 
real axis. These functions are analytic functions which, 
in the region of the complex z plane under considera­
tion, have singularities only at the zeros of Q~Od(Z), if 
a convenient modification is used. Since the complex 
z plane is assumed to be cut as in our Fig. 1, we now 
realize that 

r+~l 1 f 1 ReJ_, '2Eqdz ='2 '2Eqdz, _'" A 

where A is the contour shown in Fig. l(c). Formula 
(21) can therefore be written as follows, 

argF11 (- 00, z) = _.! !iE(z) q(z) dz 
F l1 (+oo,z) 2 A 

(22) 

(23) 

On the right-hand side of (23) the last term may be ex­
pected to be of the order of magnitude of the square of 
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the first term, unless large cancellations occur in the 
integral. 

From the exact quantization condition (7) and the 
estimate (15), as well as from the exact quantization 
condition (7') and the estimate (18), we obtain, if 
J.L (- 00, + 00)« 1, the approximate quantization condition 

(24) 

where s is a nonnegative integer. The correction 
term, which has been deleted in obtaining the approxi­
mate quantization condition (24) from the exact quanti­
zation condition (7) or (7'), can be expected to be very 
small for high energy levels, i. e., when x' and x" are 
well separated [since the J-l integrals in the estimates 
(15) and (18) are then very small compared to unity]. It 
can also be expected to be small for low-lying energy 
levels, i. e., when Xl and x" are not well separated, 
especially if the bottom of the potential well has approxi­
mately parabolic shape [since the IJ. integral in the 
estimate (18) is then very small compared to untiy due 
to the absence of zeros or singularities of Q~d(Z) in 
the relevant region of the complex z plane]. If the po­
tential is not only approximately but exactly parabolic 
in shape (linear harmonic oscillator), with the minimum 
at x = 0, we may choose the unmodified expression for 
the function q(z) appearing in the phase-integral approx­
imations of arbitrary order, and we may choose the 
particular pointz in our Fig. l(e) as z=+iR, whereR 
is a positive number larger than x" (= - x'). When 
R - 00, the J.L integral corresponding to the first-order 
as well as to higher-order approximations for the 
path shown in our Fig. l(e) then tends to zero. Hence 
the estimate (18) gives arg[F 11 (- 00, + i oo)/F 11 (+ 00, + i 00)] 
= O. Therefore, the last term on the right- hand side of 
(7') is exactly equal to zero, and hence we have rigor-
0usly proved the well-known fact that one obtains the 
exact values of the energy levels of a harmonic oscil­
lator from the quantization condition (24) already in the 
first-order approximation, the higher-order terms 
yielding no contributions, if q(z) is chosen to corre­
spond to unmodified phase-integral approximations. A 
corresponding proof restricted to the first-order ap­
proximation was given on p. 109 in Ref. 1. 

When unmodified phase-integral approximations are 
used, i. e., when QmDd(Z) = Q(z), the quantization condi­
tion (24) is the same as the generalized quantal Bohr­
Sommerfeld quantization condition which was used by 
Dunham8•9 in his treatment of the energy levels of 
diatomic molecules. The application of this unmodified 
quantization condition to such radial problems has been 
criticized and also remedied by Krieger and Rosen­
zweiglO (cf. also a paper by Howard!!). By USing, in (24), 
modified phase-integral approximations obtained by 
choosing Q~od(Z) =Q2(z) - 1/(4z 2), we get directly and in 
explicit form a quantization condition which is equivalent 
to the final result of the above-mentioned procedure de­
vised by Krieger and Rosenzweig to correct Dunham's 
treatment of the energy levels of diatomic molecules. 
When the interatomic potential is more Singular than 
the centrifugal barrier at small interatomic distances, 
the unmodified phase-integral approximations can also 
be used, and Dunham's approach8• 9 is then justified. 
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Using (23), we obtain from (7') the approximate 
quantization condition 

i fA q(z) dz = (s +i)1r- if A h(z)q(z)dz, s =0, 1, 2, 000, 

(25) 

where the error can be expected to be of the order of 
magnitude of the square of the last integral in (25), if 
large cancellations do not occur in this integral. At 
first sight one might think that (25) represents an essen­
tial improvement of (24), but actually this does not 
seem to be the case, since, instead of applying (25) in 
a certain order of approximation, it should in general 
be preferable to apply (24) in a higher order. In this 
connection we remark that (25) in the first-order 
approximation is obtained from (24) in the third-order 
approximation simply by moving the third-order con­
tribution from the left-hand to the right-hand member. 
For approximations of higher order than the third in 
(24), the connection between (24) and (25) is, however, 
more complicated. 

The discussion below (25) indicates that the attempts, 
sometimes met with in the literature, to replace the 
first-order JWKB-quantization condition for a single­
well potential by a condition of the type 

l x
"Q(x)dx=(s+.:l)7r, s=0,1,2,"', with.:l*L 

x' 

seem to be of limited value and rather unnatural within 
our present framework, in which the use of higher-order 
phase-integral approximations, consistently modified 
if necessary, is in general the most convenient way of 
increasing the accuracy. We shall now elucidate our 
point of view somewhat further. Consider for this sake 
a radial Schrodinger equation 

d21j! dz2 +Q2(Z) 1j!=0, (26) 

and let us assume that there exists a simple path A', 
as shown in Fig. 2(b), emerging from + "", enCircling 
the classical turning points and the origin, and return­
ing to + "", on which Q2(z) and Q~Od(Z) are approximate­
ly constanL (Note that in the complex z plane there is 
no need for any cut crossing A', but inside A' there is 
at least one cut, namely between the points x, and x".) 
With the phase of Qmod(Z) chosen as indicated in Fig. 
2(b), the quantity lexp[-iw(z)]1 is zero at +00 and in­
creases monotonically when z moves on the path A', 
either in the lower or in the upper half of the complex 
z plane, from + 00 to the point where A' crosses the 
negative real axis. Therefore, a solution of (26) which 
tends to zero as z - + 00 can, except for an arbitrary 
constant factor, be represented by the phase-integral 
function q-1I2(z) exp[ - iw(z)] on the part of the path A' 
lying in the lower half of the complex z plane as well as 
on the part of A' lying in the upper half of the complex 
z plane. In general the solution thus represented by the 
same phase-integral function on the whole path A' is 
not single-valued. If, however, the path A' encircles 
no singularities of Q2(z), except pOSsibly for a pole at 
the origin of at the most the second order, and if we 
have the situation of a bound state, the corresponding 
solution of (26) is single-valued on the path A'. Since 

w(z) = r q(z)dz 
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(a) 

---+--~-----,~-------------x 

Complex z-plane 
(b) 

FIG. 2. (a) Qualitative behavior of V mJd(X) - E for the case of a 
bound state in a hydrogenlike ion. (b) Contours of integration 
in the complex z plane used in the quantization conditions (27), 
(28), and (33). The heavy line indicates a cut. The phase of 
Q~a(x) is indicated for large positive values of x. 

the single-valuedness of the bound-state solution repre­
sented by the previously mentioned phase-integral func­
tion on the whole path A' then implies that (cf. Ref. 12) 

i fA' q (z) dz = integer multiple of 7r. (27) 

From the derivation of this quantization condition one 
immediately realizes that if one can choose the path 
A' such that the relative error of the phase-integral 
expression q-1I2(Z) exp[- iw(z)] for the bound-state 
wavefunction on A' can be made arbitrarily small, the 
quantization condition (27) is exact. Assuming now 
q(z) to be single-valued at the origin [which excludes 
the case that Q~d(Z) has a first-order pole at z = 0], 
we can by means of residue calculus replace the origi­
nal path of integration A' by another path A, as depicted 
in Fig. 2(b), which encircles the generalized classical 
turning points but not the origin. Thus one easily finds 
that the quantization condition (27) can be written 

~ 1 q(z) dz = (integer - ~;os q~z)) 7r , 

A 

(28) 

where the path of integration A is encircled in the 
negative sense. Let us now restrict the above treatment 
to a hydrogenlike ion for which 
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(29) 

with well-known notations. We choose 

Q~Od(Z)=* (E + Z:2) _ ~, (30) 

where a is a constant, which is assumed to be different 
from zero [in order that q(z) be single-valued at the 
origin] but otherwise arbitrary, The conditions for the 
validity of (27) and (28) are then fulfilled. Since we can 
choos e the contour A' arbitrarily large, so that the 
error of the phase-integral expression q-1!2(z) 
x exp[ - i1!'(z)] for the bound-state wavefunction on A' 
can be made arbitrarily small, (27) and (28) are exact 
quantization conditions. The function Q~od(Z) has only 
two zeros (the generalized classical turning pOints) and 
one singularity (the second-order pole at the origin). 
Inserting (29) and (30) into the definition of EO [cf. Eq. 
(11') in Ref. 5], we get 

(EO).o=O= ((I + ~)2 - ( 2)/a 2
• (31) 

Using this formula and Eqs. (9a, b, c) in Ref. 2 and 
Eqs. (14') and (16) in Ref. 5, and noting that close to 
the origin Qmod(Z) = ia/z + 0 0 0, if a is chosen to be 
positive, we get 

a, 

Res q(~) = 
.0=0 1 

(first­
order) 

(third­
order) 

1 (( !.)2 2)2 (fifth-
--83 l+2 -a. d) a or er 

(32a) 

(32b) 

(32c) 

Inserting (32) into (28), and denoting the integer in (28) 
by s + 1 + [a], where s is a new integer, and [a] is the 
integer part of a, we get the exact quantization condition 

iJA q(z)dz = (s + 6.) IT, (33) 

where 

6.= 

[O!J+l-a, 
(first­
order) 

1 (third-
[a]+I-a- 2a ((z +~)2_a2), order) 

(fifth­
order) 

(34a) 

(34b) 

(34c) 

This result shows that the choice a = l + ~ gives the 
half-integer quantal Bohr-Sommerfeld quantization 
condition independently of the order of the phase-inte­
gral approximations used, while any other choice of a 
gives a more complicated quantization condition in 
which 6. depends on the order of approximation used. 

We shall finally discuss the existence of energy values 
satisfying the exact quantization condition (7') and their 
relation to the energy values determined from the cor­
responding approximate quantization condition (24). 
When the energy E increases continuously and mono­
tonically from the value corresponding to the bottom of 
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the potential well, the contour integral .~ fA q(z) dz in­
creases continuously and monotonically from approxi­
mately the value zero, as is easily realized from the 
fact that the behavior of this integral is essentially de­
termined by its first and leading term, i. e. , 
f~:' I Qmoct(x)i dx. At the same time the expression 
arg[Fu (- 00, z)/ Fll ( + 00, z)1 changes continuously with E, 
and when z is chosen conveniently it is seen that the 
absolute value of this expression does not exceed the 
smallest one of the two integrals J.1(_00,+00) appearing 
in (15) and (18). If this smallest value of J.1(_00,+00) is 
small compared to unity, it is therefore reasonable to 
assume that arg[Fll(-oo,z)/Fll(+oo,z)] depends only 
slightly on E. Since, furthermore, the quantity 
}J A q(z )dz increases rather rapidly with E, we expect 
the quantity UAq(z)dz -arg[Fll(-00,z)/F11(+oo,Z)] to 
increase monotonically with E. Since this quantity is 
also a continuous function of E, we realize that for 
every nonnegative integer s (not exceeding a certain 
upper limit corresponding to the ionization limit) there 
is precisely one value of the energy E for which the 
exact quantization condition (7') is fulfilled, and there 
is an adjacent value of the energy E for which the 
generalized quantal Bohr-Sommerfeld quantization 
condition, i. e., the approximate quantization condition 
(24) is fullfilled. (Close to the ionization limit there 
may occur exceptional cases.) Since (7') is a necessary 
and sufficient quantization condition, we conclude that 
very close to each energy value which satisfies the 
generalized quantal Bohr-Sommerfeld quantization 
condition (24) there is actually a true energy eigenvalue. 
The energy eigenvalues can therefore be approximately 
determined by means of the approximate quantization 
condition (24). It should be emphasized, however, that 
this conclusion rests on the assumption that the ap­
propriate J.1 integral is small compared to unity and only 
slightly energy-dependent. A similar discussion can 
obviously be carried through for the approximate 
quantization condition (25). 

APPENDIX 

In this appendix we collect those formulas from Ref. 
1 which we refer to in the text. The numbering here of 
these formulas is the same as in Ref. 1, Weare in­
debted to the referee for suggesting that we should add 
this appendix in order to make the paper more easily 
readable. 

w(z)=rq(~)d~, 

M(w)=~iE ( 1{2'} - exp tW 

exp{- 2iw} ) 
-1 ' 

F(Z2' z 0) =F(z 2, z l)F(z 1> z 0), 

IF11 (w, w o) - 11,,; 2~ [exp{M jJ.}- 1], 

lim F 11 (z, z 0) exists and is finite, 
.. -z 
along A 

(3.3) 

(3.13) 

(3.18) 

-F12 (W,W O)) 

F 11 (w,w O) , 

(3,20) 

(3.27) 

(4,3a) 

(4,5a) 

N. Fn5man and P.O. Froman 1836 



                                                                                                                                    

lim F j2 (z,zo) exists and is finite, 
Z~Z 

along A 

!F 11 (Xj,x2)-1! 

~ IF l1 (.xj, zo) -11 +IFI1 (X2,ZO)- 11 + IF2j (x2,zo) I 
1-1.F11 (x2,zo)-11-1.F 21 (x2,zo)1 

~ j.J. + higher powers of Il, 

(405b) 

if j.J. is small compared to 1, (6. 13a) 

1837 

aj(z)=F j2 (z, +00)a2(+00), 

a2(z) =F22 (z, + 00) a2( + 00), 

lJ!(x)=a2(+oo)f2(x)[1 +0(j.J.)] for x" <x< +00, 

(1008a) 

(10.8b) 

if j.J. =Il(x, +00) is small compared to 1, 
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(10.12) 

(10.13) 

(100 14a) 

(10014b) 

F 22(Xj, x2) exp[iCC" I q(x) ! dx - t7T)] is real, (1001 7b) 

f XU I ) I 1 ) F dz , + 00) 
q(x dX=(S+2 7T-arg L'--( )' 

r 22 Z, - 00 
x' 

(10 0 20) 
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The tensor virial theorem in quantum mechanicsa) 
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A quantum mechanical generalization of the scalar virial theorem is derived and specialized to atoms and 
molecules in the Born-Oppenheimer approximation. The theorem is the quantum mechanical counterpart 
to Chandrasekhar's classical tensor virial theorem. The usual scalar virial equation follows by tensor 
contraction. One possible application is the introduction of more than one scale factor in a trial 
wavefunction. The scaling method proposed involves different stretchings for the different spatial 
coordinates. This is in contrast to the standard method of using the scalar virial theorem where the 
stretching is the same in all directions. An example is given where the introduction of multiple scale 
factors and the imposition of the tensor virial theorem yields a better result than the usual procedure of 
subjecting the wavefunction to a single scale transformation and imposing the scalar virial theorem. 

I. INTRODUCTION 

A classical mechanical generalization of the virial 
theorem has been given by Chandrasekhar and has been 
applied to the study of a number of problems. 1 Since the 
quantities that are related in Chandrasekhar's generali­
zation are tensors the result is called the tensor virial 
theorem. Although the classical scalar virial theorem 
has a very well-known quantum mechanical form, it 
appears that no analogous quantum mechanical counter­
part has been given for the classical tensor virial 
theorem. We shall do so below, and specialize the re­
sult to the case of atoms and molecules. We follow as 
closely as possible Chandrasekhar's notation. 

Consider N mass points with Cartesian components 
Xi ("). The Greek superscripts in parenthesis refer to 
the different particles and the Latin subscripts distin­
guish rectangular components, with analogous notation 
{or the momenta Pi (0<). 

virial theorem. For Hamiltonians of the form 

H=6(Pj(<Y.»2+V, 
i<Y. 

we have for stationary states 

(r' ~X/<Y.)P/")]) =0 

= (~{(H,Xj<Y.)]p/OI.) +X/<Y.)[H,P/<Y.)]}). 

Since 

[H X 
(01.)] __ in h (01.) 

,j - ~Vj , 

[ 
(<Y.)].... av H, Pj =lll~. uXj 

Equation (2.1) becomes 

:0 / in p (<Y.)p (a) +i1fx (a) av \-0 
<Y. \- -;nnn I J I ax/ a )/-

(2.1) 

(2.2) 
The kinetic energy and potential energy tensors are 

defined, respectively, as 

1 (PI (")P'("») 
T U =-26 (,,)1 , 

" 111 

(1. 1) 

from which Eq. (1, 3) follows directly. This is the most 
general form of the tensor virial theorem. The standard 
scalar vi rial theorem follows from (1. 3) by taking the 
trace. 

(1. 2) 

where V is the potential energy of the system. 

The quantum mechanical tensor virial theorem for 
stationary states which we prove below is 

(1. 3) 

II. DERIVATION 

There are a number of ways of deriving Eq. (1. 3), but 
perhaps the most straightforward is by using Heisen­
berg's equation of motion. The derivation that is often 
given for the scalar vi rial theorem2 can be followed if 
one considers the operator LOI.X?dp /") rather than the 
usual Z,i<Y.X/OI.)P/") that is used in deriving the scalar 

a) Supported by a grant from the City University Faculty Re­
search Award Program. 

We now specialize the theorem to the case of atoms 
and molecules. 

A. Atoms 

For an N-electron atom the potential energy is 

2" 1 2 \,1 1 
V=-ZeL.J~y I +e L.J I (yj (S)I' 

y x y/J X -x 
(2.3) 

Differentiating with respect to x/">' we have 

av 2 x (,,) 
ax/,d=Ze ~ 

(2.4) 

and that 
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~X (a)(X (ad X (8») 
2'\" I J - J 

-eLi 1 (a) (8)1 
",8 X-X 

(2.5) 

B. Molecules 

The appropriate form of the scalar virial theorem for 
molecules in the Born-Oppenheimer approximation was 
first considered by Slater. 3 He showed that, due to the 
fact that nuclei are held fixed, an additional term must 
be added to the standard mode of presenting the theorem. 
Slater's result has been extensively used in the study of 
molecular structure and binding. 

We now derive the analagous term for the tensor virial 
theorem. Taking the electronic potential energy to be 

ZKe 2 ve=-E Ix(a) _X(K) I 

'\" e2 

+LI 1 (a) (Il) 1 ' as X -x 
(2.6) 

where K denotes the nuclear coordinates, we have 

(2.7) 

The last term can be expressed as 

(2,8) 

where E is the total electronic energy. This follows 
from the Hellman-Feynman theorem. At the equilibri­
um configuration this term is zero. 

Hence, for molecules in the Born-Oppenheimer 
approximation 

'\' (K) aE 
-LlX1 -:;-:-:--r]('Ta ' 

K Xj 
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(2.9) 

III. CONCLUSION 

In the classical case the scalar and tensor virial 
theorems can be thought of as the first two moment 
equations, Chandrasekhar has also considered moment 
equations of higher order. In general they involve mo­
ments that mix position and velocity. The set of all mo­
ment equations is equivalent to the original equation 
from which moments are taken. Of course, the advan­
tage of considering low order moment equations is that 
very often the solution of a moment equation is a good 
approximation to the exact equation being considered. 

In the quantum mechanical case an interesting problem 
arises if one considers generalizing the classical higher 
order moment equations. As mentioned above higher 
order moments mix position and velocity, but there is 
no unique way of writing the quantum mechanical 
counterpart to operators which mix position and mo­
mentum, Indeed it has been shown that there are an 
infinite numer of so-called correspondence rules which 
allow the writing of quantum mechanical Hermitian 
operators from their classical counterparts. 4 It may 
be that higher order moment equations generated via 
any correspondence rule would be equivalent, but that is 
not clear. 

One possible use of the tensor virial theorem derived 
above is to use it as a means of ascertaining the accu­
racy of approximate wavefunctions. The possibility of 
using the scalar virial theorem for that purpose was 
pointed out by Slater, 3 but Lowdin5 has shown that any 
approximate molecular wavefunction can always be made 
by to satisfy the scalar virial theorem by simple scaling 
of the coordinates, This may also be true of the tensor 
virial theorem but the scaling in that case would clearly 
not be so simple. One possible measure of the accuracy 
of a wavefunction that could be used is 

(3.1) 

It would be of interest to take a particular molecule and 
calculate the quantity given by expression (3.1) for a 
variety of molecular wave functions to determine whether 
indeed there is a strong correlation with the accuracy 
of the wavefunction. H2 would be a good candidate as 
there are a great number of approximate wave functions 
for it, 

In certain cases it may be possible to use the tensor 
virial theorem to introduce a set of different scale fac­
tors to improve a given approximate wave function, The 
scalar virial theorem allows the introduction of only 
one scale factor. (Optimizing the energy with respect to 
the scale factor is equivalent to satisfying the scalar 
vi rial theorem and we suspect the same may be true for 
the tensor virial theorem. ) 

One may consider the standard scaling method5 as 
transforming the coordinates via 

r-1)Ir, 

where 1) is the constant scale factor and I the unit 
matrix. This is equivalent to stretching each coordinate 
by the same relative amount. But the most general 
transformation compatable with the tensor virial theorem 
is 
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r-Ar, (3.3) 

where A is a symmetric matrix. The diagonal terms of 
A are in general not equal and hence the stretching 
given by Eq. (3.3) can be different for each Cartesian 
coordinate. Furthermore, if the off diagonal terms are 
not zero the transformation will involve stretchings and 
rotations. 

We give an example where the usual procedure of 
introducing a single scale factor and imposing the 
scalar virial theorem does not yield as good a result 
as the introduction of multiple scale factors and the 
imposition of the tensor virial theorem. Consider the 
two-dimensional harmonic oscillator with frequencies 
Wx and w y • Suppose we take a wavefunction of the 
form 

(3.4) 

and introduce a single scale factor as in the standard 
procedure5 

x - 1)x Y - 1)Y. 

Imposing the scalar virial theorem yields 

[
m2w2+w2]1/4 

1)=.~ '2 y 
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(3.5) 

(3.6) 

with a corresponding energy 

(w 2 +w 2)112 
E(1) =1\ x 2 y (3.7) 

This is the best that can be had with one scale factor. 

On the other hand if we introduce two scale factors 

(3.8) 

A straightforward calculation shows that the imposition 
of the tensor virial theorem yields 

_ (mwx)1I2, _ (mwy)1I2 
1)x - 'If 1)y - 'If (3.9) 

with a corresponding energy 

(3.10) 

which is the correct energy, 

IS. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale 
University Press, New Haven, 1969); and references therein. 

2F. Merzbacher, Quantum Mechanics (Wiley, New York, 
1961), pp. 162-3. 

3J.C. Slater, .J. Chern. Phys. 1, 687 (193~1). 
4L. Cohen, J. Math. Phys. 7, 781, (1966); 17, 597 (1970). 
5p. O. Lowdin, J. Molec. Spectr. 3, 46 (1959). 
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Quantum theory and Hilbert space 
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Two theorems are proven which show that any orthomodular partially ordered set (hence, in particular, 
the orthologic of questions on a physical system) can be embedded in the lattice of closed subspaces of a 
Hilbert space in such a way that the standard trace formula of quantum theory can be used to calculate 
all probabilities. Possible conclusions from these results and from the existence of counterexamples to 
stronger conjectures are then discussed. 

1. INTRODUCTION 

Practically since the beginning of quantum theory, 
the question of the extent to which the Hilbert space 
language of the theory could be considered an adequate 
mathematical language for the study of arbitrary phy­
sical systems has been widely discussed. The search 
for counterexamples to any general claims has been 
conducted with as much diligence as, and somewhat 
more success than, the search for proofs of general 
validity of the language. The mathematical context of 
the problem can be described as the theory of Hilbert 
extensions of orthomodular partially ordered sets 
(orthoposets) and the probability measures (states) that 
can exist on such sets. General background information 
and any definitions not explicitly given in this paper can 
be found in our first few references. 1-3 

There seems to be general agreement that the lan­
guage of orthoposets 15 and their states is capable of 
dealing with arbitrary physical situations, whether of 
classical, modern or some as yet undiscovered type. 
This agreement follows rather directly from the rea­
sonable requirement of Einstein and Heisenberg that a 
theory, at least initially, stay as close as possible to 
the actual measurements made in laboratories. As 
currently applied, the requirement implies the structure 
of an orthoposet for the simple yes- no measurements 
in terms of which all observables can be expressed, 
with the ordering, orthocomplementation and ortho­
gonality relations determined by phYSically measured 
probabilities. The area of disagreement involves the 
thorny problems of the possibility, necessity and/or 
usefulness of realizing the physical orthoposets and 
states in terms of orthoposets isomorphic to the lat­
tices of closed subspaces (or, equivalently, proj ection 
operators) of Hilbe rt space. It is in this context that 
examples abound but counterexamples more abound. 

Invariably in work on these problems, Boolean ex­
tensions of orthoposets-the main rivals of Hilbert 
extensions-enter in, if only as tools for constructing 
examples and counterexamples, These are realizations 
of orthoposets in terms of Boolean algebras (ortho­
posets isomorphic to lattices of subsets of a set). 
Zierler and Schlessinger3 have studied what we call 
Boolean order preserving extensions (O-extensions), 
and by constructing for each orthoposet Q a unique 
minimal Boolean O-extension, have demonstrated the 
existence of such extensions for arbitrary orthoposets. 
We will refer to their construction as the ZS-extension 
of Q. Using this construction, they show that for a 

wide class of orthoposets (including those isomorphic 
to the set of projection operators on a Hilbert space) 
there cannot exist any Boolean O-extensions that also 
preserve all probability measures. 

The situation for Hilbert order preserving extensions 
is no better. Greechie and Miller4 have shown that the 
class of all orthoposets can be divided into three mu­
tually exclusive subclasses: Those having no states, 
exactly one state, or an infinity of states, and they 
have constructed simple examples of each type. Then 
WrightS has pointed out that for a class of examples in 
the last category there exist states that cannot carry 
over to any Hilbert O-extension. 

Since, for physical pu rposes, preservation of prob­
ability measures seems at least of equal importance 
with preservation of ordering, the present author was 
led to ask if there might exist measure preserving ex­
tensions (M-extensions) for arbitrary orthoposets, 
which do not completely preserve the ordering. One 
of the purposes of this paper is to give an affirmative 
answer to this question by constructing Boolean M­
extensions for every orthoposet. Using these, it is then 
possible to construct Hilbert M-extensions, and finally, 
what we call QM-extensions, in which computation of 
probability can be carried out according to the standard 
quantum mechanical trace formula. 

2. PRELIMINARY NOTIONS 

After a brief review of the notion of an orthoposet 
to establish notation, we will give only those definitions 
not current in the literature. 

Dl. For Q a partially ordered set (poset) and SeQ, 
we write !I S and V S for the greatest lower and least 
upper bound elements for S when they exist (also re­
ferred to as the meet and join of S), with the standard 
alternative notations P!I q, Vi qi' etc" for pairs and 
sequences. By an orthocomplemented poset we mean a 
poset Q with a greatest and least element, 1 and 0, and 
an operation q- q' (orthocomplementation) such that: 

(1) q" =q; 

(2) q "" p ==> p' "" q'; 

(3) q!l q' = 0; q V q' = 1. 

Two elements p,q in an orthocomplemented poset will 
be said to be orthog01Zal (p 1 q) if p"" q', which, by (1) 
and (2), is also equivalent to q ~ p'. Then an ortho­
modular poset (or simply an orthoposet) can de defined 
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as an orthocomplemented poset Q which satisfies: 

(4) ljJ p,qE: Q, piq=;,pV qE:Q; 

(5) ljJ p, q E: Q, P ~ q =;, q = p v (p V q')' . 

An orthoposet will be called an ortholattice if condi­
tion (4) is generalized to 

(4') ljJp,qE:Q,pv qE:Q. 0 

Since it is easily shown that if p V q exists then p' A q' 
exists and is equal to (pv q)', condition (5) is equiva­
lent to 

ljJ p,qE: Q, p~ q==::- q=pV (p' A q), 

and, similarly, (4) and (4') can be replaced by equiva­
lent conditions in terms of meets. 

In the terminology of D1 we can specify the two main 
types of orthoposets we will need: 

D2. A Boolean algebra is an ortholattice isomorphic 
to an ortholattice of subsets of some set, with the 
usual set theoretical inclusion, intersection, union 
and complementation providing the orthoposet ordering 
and operations. A Hilbert ortholattice is an ortholattice 
isomorphic to the ortholattice of all closed subs paces 
of a Hilbert space, with subspace inclusion, intersec­
tion, union and orthocomplementation providing the 
orthoposet ordering and operations. 0 

Of course it is well known that Boolean algebras can 
be given an intrinsic algebraic definition, but for 
purposes of physical insight D2 is useful: it allows the 
characterization of standard quantum mechanics as 
simply probability theory carried out with events as 
subsets of a set replaced by events as subspaces of 
a Hilbert space. Gleason's theoremS then specifies 
probabilities in terms of one-dimensional subspaces 
(hence, unit vectors) and their convex combinations. 

D3. For Q an orthoposet, we write <PQ for the set of 
pro/Jability measures or states on Q, i.e., the set of 
functions ep: Q - [0,1] such that 

(1) ep(1) = 1; 

(2) ljJ q,PE: Q,q iP==::- ep(qv p)= ep(q) + ep(p). 

A state ep will be said to be mixed if it can be written 
as a finite or countably infinite convex combination of 
states ep i *- ep, i. e., if ep = z:, /'; ep i whe re 2; i Aj = 1 , 0 "" Aj ~ 1 . 
Otherwise ep will be said to be pure. The set <PQ is said 
to be full if 

ljJq,PE:Q, [ep(q)~ ep(p), ljJepE:<PQ]==::-q~p. 

We now define several terms not current in the litera­
ture. 

D4. For S a subset of an orthoposet Q, we will write 
S for the set of all finite S-values sequences, and 
q" = (q~, q~, ... , q~), P" = (p~, p~, ... ,p~), .", for particular 
sequences of length n. The symbol (~) will mean the 
set of all selections of m distinct integers from the 
set {1,2, ... ,n}. We will say that Sis: 

(1) unitary if 1 E S; 

(2) i-exclusive if, "t PES, qE Q, q iP==;, qq:: 5; 
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(3) a base for Q if, ljJ PE Q, {p,p'}n 5 *-.0; 

(4) an M-base (measure-base) if 5 is a unitary 
i-exclusive base for Q. 

Moreover, if Q is also an ortholattice, we will say 
that 5 is 

(5) A-perfect if, ljJqm,p"E:S, m~n, 

[/I.~ qj ~ V " (AjEc¥ Pj)]==::-,=1 ",E ( ) 

[3Q'E:(,;:):"tmjEQ(3i""m:qj~pj)]. 0 

M-bases can be described perhaps more intuitively as 
subsets which exclude orthogonality but contain exactly 
one element of every pair of orthocomplements. We 
have now as our first lemma: 

L1. There exist M-bases for every orthoposet. 0 

Proof: By Zorn's lemma there exist maximal i-ex­
clusive subsets of any orthoposet Q, since it is easily 
seen that the union of any chain of i-exclusive subsets 
is itself i-exclusive. Assume 5 is such a maximal sub­
set, and, forsomepE:Q, assume {p,p'}n 5=0. Then 
by maximality there exist q, r c=: 5 such that q ip and 
rip' which implies qir, contradicting i-exclusiveness 
for 5. Hence, every maximal i-exclusive subset of Q 

is anM-base. Q.E.D. 

3. EXTENSIONS OF ORTHOPOSETS 

D5, Given an orthoposet Q, we say that a pair {L, A} 
is an extension of Q provided that L is an orthoposet 
and A: Q- L is a mapping with the properties: 

(1) ,1.(1) = 1 E L; 

(2) A(q'l=J...(q)'EL, "t qEQ; 

(3) for some base 5 c Q, 

p~q¢=>J...(p)""A(q), "tp,qES. 

We call L the range of the extension, ,\ the embedding 
of the extension, and 5 a base for the extension. If Q 
itself is a base for an extension {L, A}, we say that 
{L, A} is an O-extensio11 (oraer preserving extension) 
of Q. An extension {L, A} will be called an M-extension 
(measure preserving extension) of Q if: 

(4)ljJ epE <P Q,:3: (P E <P L : (p(J...(q)) = ep(q) , ljJqE Q. 

An O-extension satisfying (4) will be called an MO-ex­
tension. If the range of an extension is a Boolean alge­
bra we say that the extension is a Hoolean extension; 
if the range is a Hilbert ortholattice we call the exten­
sion a Hilbert extension, and we say that the Hilbert 
space underlying the ortholattice is the Hilbert space 
of the extens ion. We will generally use the notation 
{A,n'} for a Boolean extension and {P,7T} for a Hilbert 
extension, where P is understood to be the ortholattice 
of projection operators on the underlying Hilbert space. 
A Hilbert extension {p, 7T} of an orthoposet Q will be 
called a Boolean Hilbert extension if 1T(Q) is a subset 
of a Boolean algebra of proj ection operators in P. I 

The orthoposets Q of physical interest are, of 
course, those with nonempty (and usually even full) 
sets of states. It will be useful to have some termin­
ology specifically constructed for the physically rele­
vant situation-loosely, the QM or quantum mechanical 
situation, although all our definitions below will also 
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apply (sometimes trivially) to orthoposets with no 
states. Up to the present time physicists have generally 
required that the extensions used be a-extensions as 
well as M-extensions, and even, excluding superselec­
tion rules, that the embeddings be orthoposet isomor­
phisms. In light of the fact that some of the previously 
mentioned counterexamples of Greechie et al. 7 have 
full sets of states but cannot have any Hilbert MO-ex­
tensions, we believe these requirements are too strong, 
and that the following definitions spell out the minimum 
physically useful requirements that can be shown to 
hold in all cases. 

D6. A pair {E, 11} will be said to be a QM-extension 
of an orthoposet Q if E = PUT, where P is the ortho­
poset of proj ection operators and T the set of nonnega­
tive trace 1 self-adjoint operators on a Hilbert space, 
and 7): Q U <I> Q - E is a mapping such that: 

(1) {p, 7T}, 7T =7) r Q, is a Hilbert M-extension of Q; 

(2) 'd rp E <I> Q' q E Q, 11 (rp) E T and 

rp(q) = trace(1/ (q)1/ (rp». 

A QM-extension will be said to be: 

Boolean if 

(3) (P,7T) is Boolean; 

Pure if 

Convex if 

(5) for all mixed states rp=I>'jrpj E .po' 
j 

17(rp)=L)q(rpj)' r-:: 
j • 

Now Gleason's theorem6 and its extension to arbitrary 
Hilbert spaces under the assumption of the continuum 
hypothesis, 8 guarantee that the set of states on the pro­
jection operators of any Hilbert space of dimension 
greater than 2 is isomorphic to the set T of nonnegative 
self -adjoint trace 1 operators in such a way that the 
computation of probability can proceed according to the 
standard quantum theoretical formula used in D6. This 
obviously implies the following result which we for­
malize as a lemma: 

L2. For any Hilbert M-extension {p, rr} of an ortho­
poset Q such that the Hilbert space of the extension is 
of dimension", 2 (and assuming the continuum hypo­
thesis if H is nonseparable), there exist QM-extensions 
{E,11} of Q such that E = PUT and 7T = 7) I Q. L. 

Our results will not depend on this lemma, however, 
since we will explicitly construct the operators repre­
senting states in our QM-extensions. 

4. BOOLEAN V-EXTENSIONS 

Starting with an arbitrary unitary base 5 of an ortho­
poset Q, we introduce a method (unrelated subsets) for 
constructing a Boolean extension {A (5) ,QI} of Q such 
that 5 is a base for the extension. The method is very 
flexible, and by starting with different bases and dividing 
out suitably chosen ideals, a variety of extensions can 
be produced, including the ZS-extension if the initial 
base is chosen to be Q itself. In this latter case it is 

1843 J. Math. Phys., Vol. 19, No.9, September 1978 

easy to check that the algebra A(Q) is an a-extension 
of Q, and the results of Zierler and Schlessinger3 show 
then that there is a homomorphism onto the ZS-exten­
sion. The precise advantage of the unrelated subset 
method, however, is that it also allows the construction 
and study of extensions which have useful properties 
not always shared by a-extensions. In particular, we 
will limit our constructions to those resulting from the 
initial choice of an M-base, since in this case we can 
show that an M-extension is produced. 

D7. A subset 5 of an orthoposet Q will be said to be 
unrelated if, for every pair {p, q} c 5, neither p"" q nor 
q "" p is true. (From this definition it is evident that the 
empty set .0 and any singlet subset {q} are examples of 
unrelated subsets). For 5 c Q, let P (5) be the power set 
of 5 and P ,,(5) the set of nonempty unrelated subsets 
of S, and for NcS define: 

N" ={qE N: 'd PE N, P"" q=> p=q} 

For M,NEP II (5), let M*N=(ML' M". ~ 

It is clear from this definition that N" is always an 
unrelated set, and that Nil = 0 only if N contains an in­
finite chain with no lower bound in N. We have the 
lemma: 

L3. For 5 a unitary subset of an orthoposet Q, the 
pair P,i(S)={P,,(5), *} is an Abelian, idempotent semi­
group with unit {I}, where * is the binary operation 
defined in D7. n 

Proof: From D7 and the remarks immediately above, 
P,,(5) is obviously closed under the operation *, since, 
for M, N E P ,,(5), by unrelatedness the only possible 
chains in M:j N are of finite length 2. The checking of 
associativity- [UI.I uN)" '-' KJ" = [M L' NL KJ"-is trivial, 
involving only the transitiVity of the ordering"" on Q 

and the fact that the maximum length of chains in 
MUN:JK is 3. Hence, P,i(S) is a semigroup. The abelian 
property for * is obvious, and then the fact that {I} is 
the unit element follows from the fact that 1 is an upper 
bound for every element of Q. Finally, idempotency 
follows from the easily checked fact that, 'd N,- P,,(5), 
N"=N, and the lemma is established. Q.E.D. 

D8. For S a unitary base of an orthoposet Q and 
P ~(S) the semigroup given by L3, let U*(5) be the semi­
group ring defined by P~(5) over the field 2 ={O, I}, 
i. e., U*(5) is the free vector space of all 2-valued 
functions on P ~ (5) having only a finite number of non­
zero values, with the product * extended by 
linearity. 9 '] 

L4. For 5 a unitary base of an orthoposet Q, the ring 
U*(5) defined in D8 is Boolean, and so uniquely defines 
a corresponding Boolean algebra U(5). L. 

Proof: We need only check that every element of 
U* (5) is idempotent. But from D8 we have P U* (5) 

=>P=Li=l Ni' Ni E: P~(S). Hence P * p= 'i.'id=lNi * N j 

=L.;7=1 N j =P, since N j * NJ +Nj * Ni =0, where ° of 
course, is the unique function in U* (5) having all values 
zero. Therefore, U* (S) is a Boolean ring, and we de­
fine the corresponding Boolean algebra U(5) in the 
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standard waylO: for P,Q, E U*(S) we set 

PAQ=P*Q, 

pVQ=P+Q+P*Q, 

P'={1}+P. 

It is at this point that we could, if we wished, produce 
a Boolean extension {A(S),c.} of Q corresponding to an 
arbitrary unitary base SeQ by letting A(S) =: U(5)/Uo(5), 
where Uo(5) is the ideal generated in U(S) by elements 
of the form {I} +{q} +{q'} = ({q} A{q'Y) V ({q}' A {q'}) 
E U(S) for all q E Q such that {q, q'} c 5, and taking for 
a(q) the equivalence class of{l}+{q'} if q<j.5 (since 
then q' E S, from the definition of a base). It is straight­
forward to show that {A(S) , Il'} is an extension of Q with 
base S (the Boolean U-extension of Q with respect to 5), 
and of course if 5 =Q, the extension will be an O-exten­
sion, but it is more direct for the purposes of this paper 
to restrict consideration to M-bases, in which case no 
quotient algebra is necessary at all. We have 

L5. For S an M-base of an orthoposet Q, the pair 
{A(S), a} is a Boolean extension of Q if A(S) is the 
Boolean algebra U(S) generated by ·the non empty un­
related subsets of 5 (as in L4) and ()I is the mapping 
defined by 

{

{q} , qE S 
Il'(q) = 

{l}+{q'}. qEQ-5. 0 

Proof: Conditions (1) and (2) of D5 are obviously satis­
fied from the definition of 0'. (Recall that an M-base is 
i-exclusive, so that q E 5 <=> q' E Q - S.) Then, from the 
definition of the product * in D7, we have q ~ p <=>{q} 
*{p}={q}, and so D5, (3) is also satisfied. Q.E.D. 

D9. For San M-base of an orthoposet Q, we will 
call the extension {A(5),0'} given in L5 the Boolean U­
extension of Q with respect to 5. 0 

L6. Under the conditions of L5, the image set C1(S) 
c A(S) is A -perfect. 0 

Proof: We first note that a sequence am E IY. (S) (cf. D4) 
has singlet subsets a~ ={Pj} c S as range elements, and 
then that a(S) is i-exclusive, since a(p)la(q), p, q, 
ES, implies {p}*{q}=OEA(S), which is impossible. 
We have, then, A~=I a~=A~=1{Pi}=N*OEA(5), where 
N e PII(S) is an unrelated subset consisting of some se­
lection of the elements Pi E 5. Similarly, any join of 
the meets of sequences bn E Q (5) can be expressed as a 
sum l.,k Nk E P ~(5) of nonempty unrelated subsets Nk con­
sisting of selections of elements qj E 5 such that {qJ} 
= b']. Then, from the unrelated subset construction, it 
follows easily that N * (2.kNk) = N only if N * Nk = N for 
some Iz, and this last condition immediately implies 
D4,5), the definition of (\ -perfect. Q. E.D. 

5. EXISTENCE OF M·EXTENSIONS 

Let A be a Boolean algebra and 5 cA a unitary su~set. 
Horn and Tarskill construct a relation -1 on the set 5 of 
finite S-valued sequences, and, in terms of this rela­
tion, define a partial measure on 5 as a nonnegative 
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real-valued function cp such that: 

(PMl) cp(l) = 1; 

(PM2) 'fI am, bn E 5, am -1 bn ~ 'i,';'.l cp(a~) ~ 2,']=1 cp(bj). 

They then prove their theore m12
: 

Theorem 1.22: If cp is a partial measure on a unitary 
subsetS of a Boolean algebra A, there is a measure 1/! 
on A which agrees with cp on S. If, moreover, cp as­
sumes only the values ° and 1, the same may be postu­
lated for ?/!. 

We refer to the original paper for the details of the 
construction and proof; for our purposes we need only 
the theorem and the following specifiC properties of the 
relation-1: 

(-..11) am -1 bn ~ [a~ ~ V,=I b,]' 'fI i ~ m; 

(-..12) am -1bn ~ [A ~=l a7 ~ V O:E(;:) (1\ JE" b'])]. 

We have now the lemma: 

L 7. Let cp: S - [0,1] be a function on a unitary A -per­
fect subset 5 of a Boolean algebra A, such that 

(1) cp(l) = 1; 

(2) 'fI a,be5, a~b~cp(a)~cp(b). 

Then there exists a measure w on A which agrees with 
cp on 5. [J 

Proof: By Theorem 1.22 above (Horn and Tarski), 
the lemma will be established if cp is a partial measure 
on 5, and so we need to establish the (PM2) holds for 
cpo From (-11) and the 1\ -perfect property applied to 
the elements a~ E 5, regarded as single element se­
quences, we have 

(a) am..., bn ~ 'fI a~, 3 b'j: a~ ~ b'J, 
and from (-12) and the A -perfect property we get 

(b) ~-1bn~ [3a E C:.J: 'fI jE 0!(3i ~ rn: a~ '" b'j)]. 

Then, by simple counting, (a) and (b) together with 
condition (2) of the lemma imply (PM2). Q. E.D. 

Using L6 and L7 we can prove our basic theorem, 
establishing the existence of M -extens ions for arbitrary 
orthoposets. 

T1. The U-extension of an orthoposet Q with respect 
to an M-base 5 c Q is a Boolean M-extension of Q. ! 

Proof: The function ;p: c. (5) - [0,1] defined by ;p (a (q» 
= cp (q), 'fI q E 5, cp E <]> Q' where ("i. ;8 the embedding of the 
U-extension of Q with respect to an M-base 5, obvious­
ly satisfies the conditions of L7. The theorem then 
follows from L6. Q.E.D. 

6. QUANTUM THEORY IN HILBERT SPACE 
FOR ARBITRARY ORTHOPOSETS 

T2. There exist pure QM-extensions of every 
orthoposet. r:: 

Proof: By T1, there exist Boolean M-extensions 
{A,u} for every orthoposet Q, and, by the Stone repre­
sentation theorem, we can always choose A to be the 
Boolean algebra of all clopen subsets of a totally dis-
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connected compact Hausdorff space X. 13 For q E Q, we 
define ~Q : X - {D, I} to be the characteristic function of 
the subsets Ci(q)CX. Since {A,a} is an M-extension of 
Q, every measure cp E cf> Q can be extended to a measure 
on A, and then further extended in a natural way to a 
a-measure on the a-ring generated by A cP(X), i. e., 
to the a-ring of Baire subsets of X.14 For cp E cf> Q' let 
H~ be the Hilbert space of equivalence classes of real 
or complex functions on X, square-integrable with re­
spect to such a a-extension of cp. 

Now we must take account of the possibility that cf>o 
may be empty or may contain an insufficient number of 
measures to guarantee the one-to-oneness we require 
of an extension. To handle these cases, let <¥Q=cf>Q 
U {~1}, where ~1 is of course the characteristic function 
of X itself, and let H~l be the Hilbert space of square­
integrable real or complex sequences on X. Let H 

=I;E'i' H", and for qE Q, let 1T(q)=I:E 'i' 1T,/q) , where 
1T,,(q) isOthe projection operator defined o~ H in the 
standard way by the characteristic function ~q' It is 
obvious then from the construction that {p, 1T} is a 
Boolean Hilbert extension of Q, where P is the set of 
proj ection operators on H. To complete the construc­
tion of a QM-extension, we simply assign to each cp 
EO cf> 0 the proj ection operator 1T(cp) E P corresponding to 
the one-dimensional subspace containing the vector 
I cp) =I~'i' I cp, ¢), where 

o 

{ ~1 E H., 1/:= cp, 

Icp,IJ!)= DEH", i/J*cp. 

With this extension of the mapping 1T to include Q ~ cf>o in 
its domain, it is clear that {p, 1T} is a pure QM-exten-
sion of Q. Q. E.D. 

To obtain an easy corollary we define: 

DID. The set of pure states on an orthoposet Q will 
be said to span cf>o if every state is a convex combina­
tion of the pure states. '] 

We have: 

Cl. If the pure states on an orthoposet Q span cf> 0' 

then there exists a convex QM-extension of Q. c 

Proof: Let <¥ be the set of pure states on Q, and let 
{P,1T} be, for, example, the pure QM-extension con­
structed in T2. Initially define the mapping 71: Q ~ <¥ 
- P by 71 = 1T I Q u <¥ and then extend 71 by convexity to 
include all of cf> 0 in its domain. If, as before, T is the 
set of nonnegative self-adjoint trace 1 operators on the 
Hilbert space of the extension {p, 1T} and E = PUT, then 
{E,71} is obviously a convex QM-extension of Q. Q.E.D. 

7. CONCLUSIONS 

Several implications of our main result (T2) seem to 
be worth some discussion. First, for any system of 
physical observables, 15 our theorem implies that we 
can always find Hilbert space models in terms of which 
all empirically measurable probabilities can be cal­
culated in the standard quantum theoretical way. The 
price we have to pay to make this convenience available 
with complete generality is that macroscopically pre-
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parable observables and states may be insufficient to de­
termine the ordering (and hence the orthogonality) re­
lations of the Hilbert space mode. What this implies is 
that, if we insist on Hilbert space models, and if we 
can find no reasonable physical grounds for excluding 
the known examples of orthoposets which cannot have 
simultaneously order preserving and measurable pre­
serving Hilbert extensions, we may be forced to accept 
models which introduce "hidden" i. e., not macro­
scopically preparable) observables and states which 
violate restrictions usually imposed on physical the­
ories such as locality and causality. Of course, unob­
servable operators and states have been accepted in 
Hilbert space models since the discovery of super­
selection rules, and there are general logical and 
philosophical grounds for believing that any ultimate 
explanation of spacetime and its structure (i. e., gravi­
tation) in terms of quantum theoretical entities, pre­
sumably more fundamental than spacetime itself, will 
be compelled to exempt such entities from the, by 
definition, inapplicable restrictions of locality and 
causality as we currently understand them. What we 
find interesting is that the pure mathematics of ortho­
posets and their probability measures seems to pOint 
in the same direction. 

Then there are the implications of T2 for Boolean 
hidden variable theories in general. While the unre­
lated subset construction introduced in this paper de­
monstrates the existence of Boolean M-extensions for 
every orthoposet, and so should end any search for 
general proofs of the nonexistence of such models, the 
obviously contrived and vastly "overlarge" nature of 
the resulting extension in cases where the original or­
thoposet is not already Boolean should suggest that 
the a priori impOSition of the Boolean requirement on 
phYSical theory in general would not be in accord with 
Occam's razor. On the contrary, it seems reasonable 
to expect that much more practical and economical 
non-Boolean models will be available for any real 
physical situation in which distributi vity is not in 
evidence. 

Finally, what about the requirement that physical 
theory be formulated in Hilbert space language? 
Basically, this is assuming a linear structure for 
physical theory, with a Euclidean inner product in terms 
of which probability can be computed. We have seen 
that this is always possible, but it might be in the same 
category as the Boolean requirement-an overcompli­
cating assumption that obscures rather than reveals 
more economical structures. We believe there are 
counterindications to this possibility. Piron's work16 

has shown that a wide class of orthoposets (atomiC, 
of degree greater than or equal to four, satisfying the 
covering law and some additional assumption involving 
the field of scalars to be used) can be identified, up to 
isomorphisms, with Hilbert orthoposets. Because of 
difficulties in phYSically motivating all the assumptions 
used, we cannot justifiably call this class the set of 
physical orthoposets, but Piron's work does indicate 
the naturalness of the Hilbert space formulation for a 
broad range of physical situations. More recently, 
Dirac17 has discussed the belief, based on his own 
experience, that the imposition of simple, clear and 
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rigorous mathematical requirements, such as linearity, 
on a theory may be more productive than the search 
for seemingly realistic physical conditions; it was pre­
cisely the requirement of linearity that led to the 
formulation of the Dirac equation. 

In the end it may come down to this: whatever the 
merits of the Hilbert space language as a necessity of 
nature, it seems at present to be a necessity of thought, 
allowing us to approximate physical situations as 
closely as needed, and ultimately to arrive at simpler 
structures if they exist. 
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On the Kerr-Tomimatsu-Sato family of solutions with 
nonintegral distortion parameter 

Masatoshi Yamazaki 
Department of Physics, Kanazawa University, Kanazawa 920, Japan 
(Received 7 March 1978) 

The generalization of the Kerr-Tomimatsu-Sato family of solutions for gravitational fields of spinning 
masses to the case of the arbitrary positive nonintegral distortion parameter [) is conjectured. 

1. INTRODUCTION 

It has been shownl that the Kerr2 and the three Tomi­
matsu-Sato3 spinning mass solutions, i. e., stationary 
axisymmetric, asymptotically flat exact solutions of 
Einstein's vacuum field equations, can be written in a 
concise closed form with arbitrary positive integer 
distortion parameter 6. 

The purpose of the present paper is to generalize the 
Kerr-Tomimatsu-Sato family of spinning mass solu­
tions with arbitrary positive integer distortion para­
meter 6 to solutions4 with arbitrary positive nonintegral 
distortion parameter 6. 

In Sec, 2 the gravitational field equations for sources 
with axial symmetry and angular momentum will be ex­
pressed in the form of partial differential equations of 
only the first order, 5 In Sec, 3 the Kerr-Tomimatsu­
Sato Family of spinning mass solutions with integral 
distortion parameter Ii will be briefly outlined for the 
convenience of subsequent discussions, In Sec 4 the 
Kerr-Tomimatsu-Sato family of solutions with nonin­
tegral distortion parameter 6 will be conjectured. 
Finally, in Sec 5 we shall indicate the basis for our con­
jecture. 

2. GRAVITATIONAL FIELD EQUATIONS 

From Einstein's vacuum field equations R IJ." = 0 with 
the line element written down as 

ds2 = j"l[e2f(dz 2 + dp2) + p2d¢2]_ f(dt - wd¢)2 (1) 

we obtain the following set of equations: 

diV(j gradf + w ~: gradw) = 0 

diV~22 gradw) = 0 

ot' P(Ofof +oaoa)_o 
OZ - if oz op OZ op -

ay +L[(af )2 +(an)'2 _(Of)2 _(~) 2J= 
ap 4f iJz a z op 0 p 0 

where f ,w, amd yare functions of z and p only, and 
Eqs. (6') are used in Eqs. (4) and (5). We have 

P=K(x2_1)1/2(1_y2)l/2, Z=KXY, K=m
p , 

6 

a=x2_1, b=y2_1, andP2+l=1. 

(2) 

(3) 

(4) 

(5) 

The mass is m and the angular momentum is m 2q, 

Because any source-free vector field may be expres-

sed as a curl of another vector field, and now we treat 
tWO-dimensional vectors, it follows from Eq. (3) that 
there must exist a scalar a which satisfies 

or5 

.f ow 0 (- a) 
p2 dx ='dy \"Ka 

ow p oa ow p on 
oz = ? ap! and Tr = - F az' 

(6) 

(6') 

It follows also from Eq. (2) that there must exist an­
other scalar P which satisfies 

1 of j2 ow 0 (- wa P) 
I oy + w "iT oy = ox -;J) +fj . 

From Eqs. (6) and (7) we obtain 

1 0 (2 2\ 0 (P) if ox f + n ) = oy; , 

1 0 ( -2 2\ 0 (P) 
2f2 oy j + 0 ) = ox b • 

(7) 

(8) 

As there is a factor f2 + a 2 in Eqs. (8), we choose a 
common denominator B and define A, B, and 21 by re­
lations 

A 2I 
f=- and 0=-· B B 

(9) 

From three independent scalars A, B, and 21 [Ernst' s 5 

E = (A + i2I)/B] one may arrive at other three indepen­
dent scalars G, H, and I[Ernst' S5 ~ = (H + iI)/G] through 
definitions 

A -(~- G2)+p dB (H+G)2+P 
- G an = G ' (to) 

or 
B =A + 2H + 2G and H2 + t =AG + G2

• (11) 

Then Eqs. (8) become l 

2a (H ~ (A + 2G) - (A + 2G) ~ H) = oP 
A2\ ax ax oJ" 

2b (H .i. (A + 2G) _ (A + 2G) .i. H) = ap . 
A2 OJ' cy ax 

(12) 

In a similar manner Eqs. (6) become l 
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-- - =- 1- -B - -- +R 1 aw 2b ~ aB (1) a 0 ? 
K (Ix A2 oj' OJ' - ax Q , 

(13) 

2b ( a 0 ) oQ ~ l- (A+2G)-(A+2G)-a I =-13 ' 
A oy y x 

(14) 

- J-(A + 2G) - (A + 2G)-J =-, 2n ( a 0) aQ 
A2 h ax oy 

and 

4b (I ~ H _ H ~J) = aR 
A2" cy ay ax' 

(15) 

4a( 0 a) aR 
A2 J-H-H-J =-. 
A ax ax ay 

From Eqs. (13) we obtain 

w = - K(Q + R) + constant, (16) 
where the constant in Eq. (16) is determined so as to be 
w = 0 when q = 0 (zero angular momentum). Equations 
(12), (14), and (15) are the gravitational field equations 
for sources with axial symmetry and angular momentum 
in the form of partial differential equations of only first 
order. 

Three Noether currents of the present SU(l, 1) sym.­
metry 6 are 

( 
-1/20P (b) -1/2 OP) 

JIll - - - -cy , ax ' 
11(0-1/2 aQ , _ (-b) -1/2 iJ~ 

2y ax)' 

and 

( -1/2 aR (b) -1/2 eR 11(/ -,- - -, 
?y (1x (17) 

where the factor n is (a _ btl /2. 

3. SOLUTIONS WITH INTEGER 5 

In the present section the Kerr-Tomimatsu-Sato 
family of solutions with integral distortion parameter 
Ii will be outlined for the convenience of subsequent dis­
cussions. The solutions are1 

f=A/B, 

w=- K( Q +R - p~), 
e2Y = Ai p20 (a _ /) )0

2 

6 

A =F(1i2) =6 e(1')c(Ii, 1')f(1')F(62 - 1'), 
,.=1 

B=A +2H+2G, 

.£... (r-
'

) 0 
H=2...J d(1')pxa L:- c(15,r')F(02_ r ,) 

r=1 r' = r 
o 6 

1= 6d(r)(- qy)/r 1 B c(o, 1'')F(02 - r'), 
r=1 r'~ 

o 
G =~ c(/i, 1')F(/i2 - 1'), 

r=1 

P= 2QY/i ± t p2a'b1-"g(Ii,1',r')F(li 2 _1'), 
pqA r=l r'=l 
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(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

and 

R=P~A t1t.1 (p2arbl-"_q2bra1-"'»)h(/i,r,r') 

(28) 

Coefficients C(O,r), d(r), err), g(o,r,r'), and h(l),r,r'), 

are1 

(I) +r-l) ! 22r-16 
c(l),r)= (6-r)! (21')!,r=I,2,000,/i, (29) 

( - 1)r -1(21' - 2) ! ... 
d(r)={2r - 1(r_l)1? ,r=I,2" (30) 

e(r)==-2d(r+l), (31) 

( 
') re(r)c(li,r) ~ td(t-r' +1)c(Ii,t) 

go,'1','1' = ~2 £...J r+t-l ' (32) 
oj t=r' ' 

r,r'=1,2, .. ,6, 

and 
h( ') rr' e(r)c(o,r)c(6, r') 

6,r,r, 02(r+'1"-1)' 

r,r'=1,2,o •. , Ii. 

Functions f(r) are1 

Polynomials F({)2) and F(02 -r) are1 

F(i'?) _ det(f(r + r' - 1)/ (r + r' - 1)) , 
- det(1/(r+r'-1» 

r,r=1,2,"', Ii 

and 

2 (- 1)r -1 det(f(s + t - 1)/ (s + t - 1)) 
F(I) - r):=: r-e-'(-r)"::'c~(6-, r~) det(1/ (i + j - 1)) 

s=1,2,"', 1'-1, r+1,"', Ii, 1=2,3,"', Ii, 

i, j == 1, 2, ... , Ii, and r = 1, 2, ... , Ii. 

(33) 

(34) 

(35) 

(36) 

The determinant form of F(1'j2) and F(02 -r), r= 1,2,"', 
Ii comes from relations l 

6 

2:: 1z(6, r, r' )f(1' + r' - 1 )F(1i2 - r) = lir'l .FW), 
1'=1 

y' = 1, 2,"', 6, 

which are obtained from H2 + P =A G + G2
• Polynomials 

Ye (r)c(Ij, r).F(1j2 - r), r = 1, 2,' 0 " {) are cofactors 
of F(1i 2 ) with respect to the row r, column r' = 1 ele­
ments, respectively. The solutions given in Eqs. (18) 
~v (36) satisfy 7 gravitational field Eqs. (12), (14), and 
(15). 

4. SOLUTIONS WITH POSITIVE NONINTEGRAL 5 

In the present section we shall give the conjectured 
Kerr-Tomimatsu-Sato family of solutions with non­
integral distortion parameter Ii and we shall explain the 
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basis of our conjecture in the next section. 

The solutions with positive nonintegral 5 are obtain­
ed by means of the following four recipes from the 
solutions with integral 5 given in Sec. 3: 

I. Coefficient c(5, r) is generalized into the form 

r(5 + r) 22r- 11) 
-.::....:.:.....~-:- ---, r=l, 2, 3, 
r(<5 - r + 1) (2r) I 

c(o, r) 

where r(15 + r) are gamma functions. 

II. Polynomials F(15 2
) of degree 52 in a and band 

degree a in p2 and l are replaced by 

where 
s 0 

n=Lri-+6r~-s. 
i=1 k=1 

(37) 

(38) 

III. Polynomials F(15 2 
- r), r = 1,2, •.. ,0, of degree 

02 
- r in a and b and degree 0 - 1 in p2 and q2 are 

replaced by 

F(02 - r) = i: '£ ... t ... p2(O-I-S)q2·a62-r-nbn( - 1 )n •• 2, 
;;ti .,. (:11 1'Az=l s. 

x (n;=l(r j - r)D,=t(r' -0) 
nr=lrjn~=1 (r + r; - 1) 

x (ni>l=l(rj -rj )Dkl=1(rk - rp\ 2 
TIt~=l (r j + r; -1) "} 

x(ri r(o+rj) \ 
i=1 r(<5 - rj + 1)[(r j -1)1 ]2J 

x(n r(o+r') ) 
~=1 r(0-r~+1){(r~-1)lp , (39) 

where r= 1,2,3, .•. and also 

n='tr j +'tr; -so 
1=1 k=l 

IV. All summations with respect to r, r', etc. in Eqs. 
(21)-(28), and (32) are replaced by summations to 
infinity instead of to <5. 

It should be noted that the solutions which are obtained 
by means of these four recipes reduce to the solutions 
given in Eqs. (18)- (36) of Sec. 3 when the distortion 
parameter 0 becomes a positive integer. Eqs. (38) and 
(39) for the functions F(02) and F(02 - r) are valid 
when Ib/a 1< 1. When la/b 1< 1, p and q, and a and b 
must be simultanously interchanged in Eqs. (38) and 
(39). 

5. DERIVATIONS OF NON INTEGRAL SOLUTIONS 

In the present section we shall derive the nonintegral 
solutions given in the preceding Sec. 4 from the integral 
solutions given in Sec. 3. 
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Polynomials F(02) and F(02 - r) with positive integral 
<5 were written down in Eqs. (35) and (36) of Sec. 3 as 
determinants of degree <5 and 0 - 1, respectively. With 
the help of Laplace's expansion theorem Eq. (35) 
for F(<5 2

) and Eq. (36) for F(02 - r) can be written down 
as 

(40) 

and 

(41) 

where 
s s 

n=:0r.+Z:;r~-s and r=l, 2,'" ,0. 
i:::l 1 If::: 1 

It follows that Eq. (40) for F(Ii2), Eq. (41) for F(<5 2 

-r), and Eq. (29) for c(o,r) contain the factors 
(<5+r-1)1/(<5-r)1, When integral 0 is generalized into 
positive non integral 0, these factors (0 +r -1)1/(0 -r)l 
may be generalized into gamma functions r(o +r)/ 
r(o - r + 1). In this way, we arrive at the four reCipes, 
given in Sec. 4 for obtaining non integral solutions. 
It will be left to a future study to show that these 
conjectured solutions with nonintegral 6 actually satisfy 
the graviational field Eqs. (12), (14), and (15), 

From the solutions given in Sec. 4 it is straightfor­
ward to obtain charged spinning mass solutions with 
nonintegral 0 using the formulas which are given in 
the third paper cited in Ref. 1. 

1M. Yamazaki, J. Math. Phys. 18, 2502 (1977); Prog. Theor. 
Phys. 57, 1951 (1977); J. Math. Phys. 19, 1376 (1978). 
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(1972); Prog. Theor. Phys. 50, 95 (1973). 
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native approach to the construction of such solutions has been 
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'F.J. Ernst, Phys. Rev. 167, 1175 (1968). 
SR. Matzner and C. Misner, Phys. Rev. 154, 1229 (1967), 
7S. Hori, "On the exact solution of Tomimatsu-Sato family for 
an arbitrary integral value of the deformation parameter," 
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Search for periodic Hamiltonian flows: A generalized 
Bertrand's theorem 

E. Onofri and M. Pauri 

Istituto di Fisica dell'Universita di Parma, Sezione di Fisica Teorica, 43100 Parma, Italy 
and Istituto Nazionale di Fisica Nuc/eare, Sezione di Milano, Milano, Italy 
(Received 8 August 1977) 

A complete classification is given of the two-dimensional Hamiltonian systems (whose Hamilton-Jacobi 
equation separates in Cartesian or polar coordinates) which admit strictly periodic motions for open sets of 
initial conditions (completely degenerate systems). Any of the systems which are separable in Cartesian 
coordinates turn out to be canonically equivalent to some anisotropic harmonic oscillator. In the polar case 
our results provide a generalization of a celebrated theorem of Bertrand. It is proven that all the 
completely degenerate systems fall into two families. These families are characterized by the semiclassical 
inverse "spectral functions" 

nlJI + n,J, =J(H) = a( - H)-II'_{3, 

nJl + ",J, =](H) = aH-{3 
(a, {3 real positive constants) and contain, as central symmetric cases, the Kepler system and the isotropic 
harmonic oscillator, respectively. Qualitative and higher symmetry properties of these systems are also 
discussed. 

1. INTRODUCTION 

In this paper we present a method to characterize 
strictly periodic Hamiltonian dynamical systems in 
classical mechanics. It is well known, since the last 
century, that the only strictly periodic systems with 
rotational symmetry are the isotropic harmonic oscil­
lator and the Kepler problem (Bertrand's theorem). 1.2 

The extension to noncentral systems has been consid­
ered in the recent literature, 3.4 the aim being to classi­
fy systems possessing a maximal dynamical symmetry. 
The technique employed to determine such systems was 
based on the alleged connection between complete de­
generacy of the motion (i. e., strict periodicity) and the 
separability of the Hamilton-Jacobi equation in more 
than one system of coordinates. As we stressed in pre­
vious papers, 5.6 this connection is not entirely rigorous 
and the results which stem from this principle must be 
checked. This is due, essentially, to the local charac­
ter of curvilinear coordinates: The separation constants 
in such coordinates 7 may fail to be isolating in phase 
space. 5 Only if the motion is confined to the regularity 
domain of the local chart can one be sure that such 
constants of the motion are isolating, but this fact can 
be checked only on the explicit solutions of the equations 
of motion. On the other hand, there exist completely 
degenerate systems which are separable in only one 
system of coordinates (anisotropic oscillators, for in­
stance) and these are overlooked in this approach. 

We shall adopt a more direct attack on the problem. 
starting from the existence of action-angle variables in 
a suitable region in phase space, we shall impose the 
degeneracy condition directly in the form 

(1.1 ) 

where H is the Hamiltonian, (J1,J2) are action variables, 
(nl, n2) are positive integers without common factors 
whose meaning is well known from analytical mechaniCS, 
and the function J (H) is a priori arbitrary-it is one 
of the unknown functions in our problem. This line has 
been followed by Enriotti and Faccini 4; at a certain 
point in their analysis, however, they introduce an 

"ansatz" which severely limits the generality of their 
results. We shall be able, instead, to transform Eq. 
(1. 1) into a system of integral equations where the po­
tentials defining H enter as unknown functions. These 
equations can be reduced to linear integral equations of 
the simplest type (Abel's equation); as such they are 
easily solved. This appears to be a simple extension 
to the multidimensional case of the "inverse problem" 
studied in Ref. 2 (Sec. 12). It is well known that the 
classical inverse scattering problem can also be solved 
in this way. 8 

We shall limit ourselves to systems with two degrees 
of freedom which are separable in Cartesian coordinates 
or in polar coordinates. In these cases we obtain an 
exhaustive characterization of all the potentials which 
admit strictly periodic motions. Unlike the previous 
known examples which depend only on a finite number of 
parameters, our potentials are defined in terms of one 
(polar case) or two (Cartesian case) arbitrary functions. 
It is nevertheless a simple task to check whether or not 
a given system is completely degenerate using our 
classification. The Cartesian case is essentially trivial, 
being completely reducible to the calculation of Landau 
and Lifshitz. The result in this case is that H is canoni­
cally isomorphic to some harmonic oscillator. A more 
refined analysis is required for the polar case. We 
shall prove that the integral equations which follow 
from Eq. (1.1) admit solutions if and only if J is of the 
form 

{

Ci(-H)"1/2_ i3 , 
](H)= 

aH- i3 (1. 2) 

(Ci, i3 real positive constants). We find two families of 
strictly periodic Hamiltonian systems, then; the 
Kepler problem belongs to the first family, the har­
monics oscillator to the second one. This is the gen­
eralized Bertrand's theorem to which the title of this 
paper refers. All these Hamiltonians (except for 13 = 0 
which correspond to the Kepler problem and to the 
harmonic oscillator) have roughly the same qualitative 
properties. The motion takes place around a minimum 
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of the potential which is at a distance ro ex {32 from the 
origin with a depth Vo ex (3-2 for the first family and 
ro ex~, Vo ex (3 for the second one. 

Little is known in general about the global symmetry 
in phase space of these Hamiltonians. In particular in­
stances we have proved the existence of a global SU(2) 
symmetry for the members of the first (Kepler) family 
with nl =n2 = 1; the Schrodinger equation of the corre­
sponding quantum systems has been solved and it shows 
the characteristic higher degeneracy of a SU(2)­
symmetric Hamiltonian. The existence of a dynamical 
(noninvariance) group and the "geometric quantization" 
of these Hamiltonians are being inVestigated. 9 

The paper is organized as follows: In Sec. 2 we 
discuss the Cartesian case, essentially to show how 
Abel's equation works in the simplest case. In Sec. 3 
the more complex problem of systems which are 
separable in polar coordinates is dealt with and we 
prove our generalized Bertrand's theorem. In Sec. 4 
we summarize the results and discuss the qualitative 
features and the symmetry properties of these 
Hamiltonians. Finally, the elementary properties of 
Abel's equation (Euler transform) are quoted in the 
Appendix, for the reader's convenience. Three tables 
at the end of the paper summarize the results. 

2. "RECTANGULAR" SYSTEMS 

Let us consider a particle of mass rn moving in a 
two-dimensional rectangular potential U(xj, X2) 
= UI (XI) + U2(x2) so that the Hamiltonian is 

H(xj, x2,PI ,P2) = 21
m (P~ + pV + UI (XI) + U2(X2). (2.1) 

The Hamilton-Jacobi equation is then separable in 
Cartesian coordinates and the constants of separation 
may be chosen to be the partial energies E I , E2 
(E1 +E2 =E). Assuming that the functions U1> U2 are 
sufficiently well behaved and possess a local minimum 
at XVI' x Oz respectively, it follows that for certain 
intervals of values of E 1, Ez the surface Z (E1, E 2), 

6(E1,E2)= {2~Pl+u/(x/)=Ei' i=1,2}, (2.2) 

is compact and suffiCiently regular. Actually in this 
case );(E1,E2) is a two-dimensional torus lO and it is pos­
sible to define the action-angle variables 

J j = ;1T f {2m[E j - Uj (x)J}1/2 dx. (2.3) 

It is well known that the Hamiltonian is a function of 
these action variables only, and not of the conjugate 
angle variables WI' w 2• It is also well known that the 
system admits strictly periodic motions if and only if 
the Hamiltonian depends on the action variables through 
the expression nlJI +n2J2 with positive integers 11j, n2,11 
i. e., if a continuous function J exists such that 

(2.4) 

Let us choose the additive constant of the energy in such 
a way that Uj(xoj ) =0. Since J/ is a function of E/ alone 
and J/(O)=O, it follows that 

J (E I +E2) =nlJI (E I ) +n2 J 2(E2) =](EI ) + ] (E2), (2.5) 
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which, because of the continuity of], implies 

] (XE) = X] (E), 

i. e., ] is linear, 

](E) =E/W 

(W real positive constant). 

Then we have 

(2.6) 

(2.7) 

J j (E/) = ;1T ! V2m[E j -U/(x)Jdx=Ej /(nlw), (2.8) 

We shall now regard Eq. (2.8) as a system of integral 
equations defining U/ (x,). The two cases i = 1,2 can be 
solved separately; to simplify the notation, we drop 
the index i, for the moment, and rewrite the equation 
as 

(2.8') 

This equation can be linearized2 by introducing the 
inverse function x=x(U); since U(x) has a minimum at 
X =xo, x(U) has two branches x.(U), xjU) which merge 
at U=O. Let 6(U)=x.(U)-x.(U) be the discontinuity 
along the cut. Equation (2.8') is now transformed as 
follows, 

~E=2IE vl2m(E- U)(dX. _ dX_) dU 
nw dU dU 

o 

=2 vi2mfE ..f E _ U d6(U) dU 
dU 

o 

=..rz:m IE 6(U) dU. (2.9) 
o ..fE- U 

After an integration by parts, we have used the fact that 
6(0) = O. The equation 

fE~dU-~E .,; E - U - ...;'2riiiiW 
o 

(2.10) 

is of Abel's type and the solution is found at once [see 
Eq. (A3)J, 

o(U) = (~) 112 _1 f u~ = ~ (2U) 112. 
m nw o.,f"fJ=E nw m 

(2.11) 

The most general solution U(x) of Eq. (2.8 1 ) is then ob­
tained by writing 

x(U)=±!-o(U) +G(U), (2.12) 

where G(U) is a single-valued function of U near U = O. 
The simplest choice, G =xo = constant, corresponds to 
the harmonic oscillator potential 

(2.13) 

In order that U(x) has the required properties (single 
valuedness, a local minimum at xo), G(U) must be re­
stricted to verify 

I G'(U) 1< (11W vl2mU)"1 • (2.14) 

As an example, let us consider 

E. Onofri and M. Pauri 1851 



                                                                                                                                    

(2015) 

withy>O, lal<a o=(1/nw)(2/m)1I2. By inverting we 
find 

The choice a = a 0 gives rise to an infinite barrier at the 
origin x = 0; the potential is 

U(x) = (2Q O)"2 (x _ ~) 2 , (2.17) 

which is well known to give oscillations with a period 
independent of the energy. 

In conclusion, the most general Hamiltonian of the 
form (2.1) which satisfies Eq. (2.4) is constructed as 
follows: We choose any two functions G1(Ul), G2(U2) 
satisfying Eq. (2.14); these are inserted into Eq. (2.12) 
which defines U1(Xl) and U2(X2)' Notice that all these 
Hamiltonians can be transformed into some anisotropic 
harmonic oscillator through a global canonical 
transformation. 10 

3. "POLAR" SYSTEMS 

A. The classical inverse bound state problem 

Let us now consider a particle of mass m moving in 
a potential U(r, <;0) so that the Hamiltonian is 

( ) 1 (2 P~) () U( <;0) H r, <;o,PnP", = -2 Pr + -:::T + V r + -:::z . m r r 
(3.1) 

The Hamilton-Jacobi equation is then separable in polar 
coordinates. We assume that for certain intervals of 
values of the separation constants E, A the surface 

={ H(r,Pn <;o,p",) =E, 

6(E,A)- p~+2mU(<;O)=A2, (3.2) 

is compact and sufficiently regular. In this case, it is 
a two-dimensional torus and it is possible to define 
the action variables 

Let 

Jr(E,A)= :7T f {2m[E- V(r)]- A2/r2}1 /2 dr, 

J",(A) = :7T f [A2 -2mU(41)]1I2d41. 

(303) 

(3.4) 

We shall solve the following inverse problem: Given the 
functions J (E,J <II) and J <II (A), determine the potentials 
V(r) and U(<;o). Let us recall that J and J ",(;\') determine 
the semiclassical spectrum of H, so that the problem 
may have an independent interest in itself. The problem 
will be solved separately for V(r) and U(<;o). The effec­
tive potential is defined as usual, 

A2 
V(;\.,r) = V(r) +~. 

mr 
(3.5) 

In order to have bounded orbits on a compact L(E,;\.) 
the effective potential must have a minimum at some 
ro(;\.); we define 

(3.6) 
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In a neighborhood of ro(A) we define the inverse function 
r(;\., V) with two branches rt (;\., V)?o r2(;\', V). We have 

1fE d 
Jr(E, A) = rr '" 2m(E - V) dV (rl (;\., V) - r 2(;\., V»dV 

Vo 

_ ffm IE o(;\., V) dV 
- 21T J E - V ' 

Vo 
(3.7) 

where o(;\., V) =rl - r2' We are led to an Abel integral 
equation also in this case. Solving for 0 [see Eq. (A3)] 
we obtain 

0(:\ V)=(3.) t/2fV Jk(E,J<II) dE. 
'm "'V-E 

VolA) 

(308) 

Now let us differentiate the first Eq. (303) with respect 
to :\; it follows that 

~ f d(l/r) - J:.. J (E :\) 27T "'2m(E_V)-B:\r,' (3.9) 

Then, by defining 1)(:\, V) = 1/r2 - 1/r1 we have 

~ fE 1)'(A, V) dV = J:.. Jr(E, :\). 
1T V v 2111 (E _ V) B:\ 

o 

(3.10) 

As usual, we obtain 

1)(A, V) = n:; f v 
Vo(~) 

(3.11) 

Finally, from the knowledge of 0 and 1) we can find 
r(:\, V), namely 

1 (1 2 0(:\, V) ) 112 
r=r(:\,V)=±2 0(A,V)+ "40 (A,V)+ 1)(:\,V) (3.12) 

Equations (308), (3.11), and (3.12) completely solve 
the problem for the radial potential V(r). Actually the 
function VO(A) is readily obtained from the data 
J (E, J <II) and J", (:\), since it holds that 

(3.13) 

Notice that, unlihe the Cartesian case, V(r) is uniquely 
determined. 

We can find U(<;o) by a similar procedure. Let Uo be 
the minimum of U(41). In a neighborhood of Uo we can 
define the inverse function <;O(U) with two branches 
<;01(U)?o <;02(U), For:\2 sufficiently close to 2mUo it must 
hold that 

j A2/2m (A2 ) 112 d 
v'2Yi1 2m - U dU[<;Ot(U) - <;02(U)]dU=1TJ,,(A), 

Uo 

(3.14) 

This is again an Abel equation which can be solved to 
~ve U 

" = (U)- (U)= (~)1I2f (d/dA) J <II(I2iiiA) d A 
v<;O <;01 412 III ~. . a • 

Uo V U - A 

(3.15) 

As in Sec. 2, the most general U(<;o) is then obtained 
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by solving for U in the equation 

cp(U) = ±iocp(U) + C(U), (3.16) 

where C is any regular function in a neighborhood of 
the real positive U axis (U?- Uo). 

This formulation of the problem is correct in the 
assumption that Uo is an isolated minimum, but not 
every choice of J ,,(X) is compatible with this assumption. 
For example, J" (X) == X does not make sense when in­
serted in Eq. (3.15); we would obtain 0cp(U)=1T for every 
U which is incompatible with a local minimum of U. 
This fact raises a serious problem, which must also be 
solved for JT(E, X), namely to determine the class of 
admissible initial data JT(E, X), J ",(X) for which a solu­
tion to the inverse problem exists. What may happen 
is that the potential Vex, r} which we obtain by solving 
for V in Eq. (3.12), fails to be of the form VCr) +X2/ 
(2mr2). In this case all of the formalism breaks down, 
and the only conclusion would be that the data is incom­
patible with the particular model given by Eq. (3.1), 
This problem will be solved in Sec. 3C in the special 
case of completely degenerate systems. 

B. Example: The "Kepler family" 

An interesting example (which we shall prove to ex­
haust almost all the possibilities for the periodic case) 
is given by the following choice of initial data: 

JT(E, A) = ](E) - qJ ",(X), 

J (E) = ml?(- 2mEt1/2 - f3 (k, f3 real positive constants), 

J ",(A) =J(X), (to be determined) 

q = rational positive number. (3.17) 

By inserting this data into Eqs. (3.8), (3.11), and 
(3.13), we easily obtain: 

O(A, V)=- ~ (1- ;0 r/2

, 

1)(X, V) = 2V2"m q[J'(X)/X](V _ Vo(X»1/2 , (3.18) 

mk[ - 2m Vo(A)]-1I2 = qJ(A) + f3. 

From Eq. (3.12) we then obtain 

k ( V) 112 
reX, V)=± 2V 1- Vo 

+ [( - ;~ r (1 - ;J -2V _ 2:1~O qJ'V ] 1/2 

and, after some algebraic manipulations, 

r2V2 + 2 (A(qJ + {3) _ (qJ + {3)2) 
2mqJ' m 

_ k 2 + (_X )2 (qJ +(3)2 =0. 
2mr qJ' 

(3.19) 

(3.20) 

This shows that the solution V = Vex, r) is of the form 
VCr) +A2/(2mr2) if and only if J(X) satisfies the differen­
tial equation 

A(qJ +{3) 2 2 
- qJ' +2{qJ+(3) =A +CI' (3.21) 

whose general solution is 
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J(X) = -i- {:>..2 + CI ± [(X2 + Cl)2 + C2]1I2}1 /2 - ~ . 
v~ q 

(3.22) 

Correspondingly we obtain the following potential, 

The constant Cl is irrelevant since it can always be 
associated with U(cp); it will be adjusted in order to have 
U(cp)?- 0, as we have tacitly assumed in Eq. (3.2). 
Equation (3.22) gives the most general J(X) for which 
the radial inverse problem has solutions: only the plus 
sign survives when we solve for the angular potential. 
To simplify the calculation, let cl=O, C2=_y4, then 
it holds that 

J(X) = 21 «X2+y2)112± (X2_y2)112]_ ~. 
q q 

(3.24) 

This is to be inserted into Eq. (3.15) to yield 

"(U) -It -I ( U-Uo ) 112 
vcp =q an Uo +y2/(2m) 

-I t -l( U-Uo )1/2 (2) 
+q an Uo- y2j(2m) 3. 5 

where U 0 = (1/2m )[(32 + (y2/2W]. The minus sign in 
Eq. (3,22) would give a negative ocp(U) and must be 
discarded. According to Eq. (3.16) we have now to 
choose a function C(U); the simplest choice is C=O 
which gives 

(3.26) 

which is defined for Icpl< rr/2q, (lI=i(y/(3)2<1. The 
limiting case (lI - 1 gives a nonanalytic potential for 
which Uo is not an isolated minimum; apart from that, 
the potential is continuous, with continuous gradient 
and it gives a strictly periodic motion, 

U(cp) I _ = L 1 + cos
2
(2qcp) 

01-1 2m 1 + cos(2qcp) I cos(2qcp) I (3. 27) 

C. The generalized Bertrand's theorem 

Weare now prepared to examine the basic problem of 
classifying all the Hamiltonians which admit separation 
in polar coordinates and whose time evolution is period­
ic for an open region in phase space. We shall make use 
of the formalism of Sec. 3 A and we shall choose 

(3.28) 

where q is any positive rational number. The example 
of Sec. 3 B shows that not every input {] (E), J(A), q} is 
compatible with the structure of the Hanliltonian. There­
fore, we shall now determine the most general admis­
sible input. Equations (3.8), (3.11), and (3.13) assume 
the form 

(2) 112/ V 
(i) o(X, V) = -;; 

Vol.} 

}'(E}dE 
VV-E ' 

(ii) 1)(A, V)=2V2mq J';A) VV - Vo(A) , 

(iii) }(Vo(X»=qJ(X). 

By differentiation we find 
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o{=- (m2 ) 1/2 qJ'(A) 
V v - Vo(A) 

and Eq. (3.12) is transformed into 

1 (02 AOO~) 1/2 
r(A, V) =±2 0 + "4 - (2qJ,)2 • 

The condition that V(A, r), implicitly defined by 
Eq. (3.31), be of the form V(r) +A2/(2mr 2) can be 
stated in differential terms as follows: 

OV/ or/ or A 
~ r=const =- 01.. oV = mr2 , 

i. e., 

2 or or 
mr 01.. + oV =0. 

(3.30) 

(3.31 ) 

(3.32) 

(3.33) 

By inserting r(A, V) in terms of 0 [Eq. (3.31)], we ob­
tain two partial differential equations in the single un­
known 15, namely 

ofv=- ao~3, 

", ",2 a-I +Aa' 0" vv 2 VA 0' 
AX = a152 - 6"" - Aa A , 

(3.34) 

(3.35) 

where a = [2qJ' (1..)]-2. [Notice that Eq. (3. 34) is precise­
ly the differential version of Eq. (3.30). In order to 
simplify the notation, we put m=1 until Eq. (3.60)]. 

Since we have more equations than unknown functions, 
some compatibility conditions must be satisifed. We 
proceed as follows: By differentiating Eq. (3,34) with 
respect to A, and Eq. (3,35) with respect to V we find 
a third equation, independent from the previous ones, 
namely 

oh= 2 0; + 2n200{4 _ 5aO l>-0{2 + 2n (a ~ 1 + ~') 626{3. 

(3. 36) 

There is a second integrability condition between this 
latter and Eq. (3.34) which gives 

12(aoo{2 _ 01r)2 + 16 (a ~ 1 + ~') 6{62(a66{2 - Ov.) 

_ 046{2 (aa"- 2n,2 +A-1(7n' _ 5aa') + (a-l);~ - sa») 
=0. (3.37) 

This implies that for some function G(A) it must hold 
that 

(3.38) 

By comparing this latter equation with Eq. (3.34) we 
find 

+ 6' 62 G' + - - - --- + a' = 0 [ 
G2 G (a 1 )] 

A a S? A • (3. 39) 

Weare forced now to conclude that both quantities in 
square brackets in Eq. (3.39) must vanish, since other­
wise we would obtain that 

(3.40) 

i. e., 0(1.., V) would be separated in a product of a func-
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tion of A times a function of V which in turn would imply 
[through Eq. (3.30)] that 

Vo(A) = const :=>J(A) = const (3.41) 

which is nonsense, In conclusion we can go on with 
Eq. (3.38) where G(A) is a solution of the following 
equations: 

G(A)=t (a' +2 a~ 1) , 
G'(A)- 2.. (2a' + a-I) - 3a ;>,. 

(3.42) 

It follows that the function a(Al, which is related to our 
input function J(A), must satisfy the following second 
order equation 

3aa" - 2a,2 + A-1a'(a + 5) - 21..-2 (a - 1)(4a - 1) =0. 

(3. 43) 

The general solution of this equation can be found to be 

a(;>,.)- (1..
2 

+Cl)2 +c2 (3 4 ) 
- 2;>,.2[1..2 +Cj ±«A2 +Cl)2 + C2)1/2] , 4 

Actually it will be more convenient to use Eq. (3.42) 
as the formal definition of G(A). From Eq. (3.38) it fol­
lows that 

(3.45) 

where t:. = 66{; we can also derive an equation for t:. 
directly from Eq. (3.35); it holds that 

(3.46) 

Let us solve Eq, (3.45), (3.46) with respect to t:.{ and 
t:. v.: 

The general solution is then 

t:.(:\, V) =- G(A)-l{V _ at1 

(3.47) 

(3.4S) 

The only integration constant a may be dropped, since 
it is an additive constant to the energy. The singular 
case G(A) = 0 must be treated separately (see below). 
From Eq. (3.48) we obtain 

t:. vw- v V - V Q(A) 
6=6~= VG(A) (3.49) 

By differentiating with respect to A and comparing to 
Eq. (3.30), it follows that 

V' G(A) d G(A)2 
~ = a(:\) = d:\ In -"S'l ' (3.50) 

where the last step is a consequence of Eq. (3.42). In 
conclusion we have 

(3.51) 

Now by computing the derivative of (- Vo)"112 we find 

!![_V(:\)]-1/2cx:!! (ffi ___ l_cxqJ' (3.52) 
dA 0 riA G - 2m ' 

hence 

E. Onofri and M. Pauri 1854 



                                                                                                                                    

(3.53 ) 

By recalling Eq. (3. 29iii) we conclude that the only ad­
missible ](E) is given by 

](E)=a(_E)"1I2_f3, (3.54) 

As a consequence, the potentials found in Sec. 3 B) ex­
haust all the possibilities, except for the Singular case 
G = 0, which we shall now examine. 

Equation (3.47) with G(A)= 0 becomes 

(3.55) 

which imply A(A, V) == constx n-1/2• It follows that 

5(A, V) ==- fie"; V - Vo (C a real constant). (3.56) 

An argument similar to that used above shows that in 
this case 

V~(A) a: n-1/2 = 2qJ'(A), (3.57) 

hence 

(3.58) 

In conclusion the only admissible input functions are 

~ a(- E)"1/2 - {3, 

] (E) = l aE - 13. 

This is the result we refer to as a "generalized 
Bertrand's theorem. " 

Weare left to consider in detail the case J (E) 
= aE - i3. We have 

aVo(A) - f3=qJ(A), 

0= (!) 1/2 2a";V _ Vo, 

r(A,V)=±a(!) 1I2..;V_VO 

+ (2~2 (V _ Vol + !J') 112 

By inverting we find 

(3. 59) 

(3.60) 

m A A2 
VIA, r) = Vo + ~ r2 - 4aqJ' + 2m(2qJ,)2r 2' (3.61) 

The admissible J(A) are given by 

(2qJ,)"2=I+C1 A-2 • (3.62) 

Correspondingly the potential VIr) is given by 

V(r)=pm r2+~2c • 
a mr (3.63) 

The second term is trivial, since it can be reabsorbed 
into the angular part U(qI); therefore, a linear ](E) 
corresponds to a harmonic oscillator radial potential. 
U(qI) can be obtained as a special case of Eq. (3.25) 
with y = 0; we do not find anything new with respect 
to the potentials already known, except for the arbitrari­
ness in the choice of G(U). 

The discussion of the angular part U(qI) is not com­
plete until we have discussed the following situation. 
Suppose that U(qI) is bounded and let 
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(3.64) 

This means that the particle rotates around the origin. 
The equation defining J II' (A) is the following, 

f
2r 

J,,(A):=: ;1T dql[A2_ 2mU(qI)Jl/2, 

o 
(3.65) 

which is not equivalent to an integral equation of Abel's 
type. In general we do not have an explicit inversion 
formula for this case, however if we require that the 
How is periodic for A2> 2mUt , we know that JIP(A) is 
restricted to the form given in Eqs. (3.22) and (3.24). 
For this particular input we can solve Eq. (3.65). Let 

(3.66) 

An asymptotic estimate as A - 00 shows that (:3 = 0, q == 1, 
and only the plus sign is admissible. The equation 

..!.. f 2rdql [A 2 - 2mU(qI) J1I2 = ..!.. (A2 + y2)112 + ..!.. (A2 _ y2)1/2 
21T 2q 2q 

o 

(3.67) 

admits an infinite number of solutions obtained as fol­
lows: LetA 1, A2 be a measurable partition of the inter­
val (0, ... ,21T) such that J..l (At) == J..l (Az) = 1T. The potential 

{

- yZ/2m, qI EAI' 

U(qI) = 2/ (3.68) +y 2m, qlEA 2, 

is a solution of Eq. (3.67). It is still to be shown that 
this is the general solution. To this aim, let us make 
an expansion in A -I, 

(21T)"lf2< dql'f e~2) (-2mU(qI»",\-2" 
o 

==t~ (1~2) [y2"+(_y)2"],\-2., 

which implies (a ==y2/2m) 

(27T)"1 J2. U(cp)"dcp=t(a" + (- an. o 

It follows that 

(21T)"1 J,2r[U(cp)2 _ a2]2dql=0. 
o 

(3.69) 

(3.70) 

(3.71) 

(U2 - aZ
)2 being nonnegative, it must vanish, which 

shows that Eq. (3.68) is the general solution. The other 
choice of c2 [i. e., J(X) given by Eq. (3.22) with Cz > 0] 
does not admit solutions of this type, since we would 
obtain an equation 

(21T)"1 102
• u 2" dql = (-1)" a2n , (3.72) 

which is impossible. 

4. CONCLUDING REMARKS 

Let us summarize the results obtained in previous 
sections and briefly comment on them. The most gen­
eral Hamiltonian in two degrees of freedom with strict­
ly periodic time evolution has been determined by 
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assuming separability in Cartesian coordinates or polar 
coordinates. The result is given in Table I (Cartesian 
case) and Table Il'-II" (polar case). It will be noted 
that previously known potentials are contained as special 
cases. 3.4 We have not listed discontinuous potentials 
which arise for some special choice of parameters (see 
Sec. 3 B) nor the potentials given by Eq. (3.68) which 
also are discontinuous. 

It would take too long to study the properties of 
these Hamiltonians in detail. We shall limit ourselves 
to a few remarks. 

First of all, since all the Hamiltonians belonging to 
the same family have in common the same function J (H) 
apart from the additive constant {j, one may ask whether 
it is possible to identify them by means of a canonical 
transformation. The simplest candidate is of course a 
translation on the action variables, 

J - J =J + const, 

w-w=w. 
(4.1) 

However such a transformation cannot be everywhere 
defined since the action variables are positive definite. 
Even if we allow for more general transformations, it 
can be proven that Hamiltonians with different values of 
{j are canonically inequivalent from a global point of 
view. 10 This fact is obvious in the case j3 = 0 for the 
"Kepler" family (H is unbounded from belOW) as com­
pared to the case j3 * 0 (H is bounded from beloW). Still 
a transformation like Eq. (4.1) may be used locally to 
find the solution of Hamilton's equations for a 
Hamiltonian with j3 > 0 starting from the known solution 
of the Kepler problem [see for example the Hamiltonian 
defined by Eq. (4.3) below J. 

Another interesting point is the existence of a global 
symmetry [SO(3) or SU(2)] for the Hamiltonians we have 
classified. In the Cartesian case, with nl =n2, it is 
fairly obvious that a suitable choice of Cj(Uj) such that 
J j and J2 are still defined in the whole range (0, + 00) 
gives a Hamiltonian essentially equivalent to an iso­
tropic harmonic oscillator. We conclude, in this case, 
that the Hamiltonian is SU(2)-symmetric, the realiza-

TABLE 1. Hamiltonian in CarteSian coordinates (x lo xZ.P!,Pz). 

Gj(Uj) single valued in a neighborhood of Vj ~ 0 

Special cases: 

Gj = 0 Harmonic oscillator 

Gj =cdVj +y)1(2 Eq. (2.16) 

QI =(l/n;w) (~) 1/2 Eq. (2.17) 
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y 

x 

FIG. 1. V(r,cp). Y=K=l, m=1/2. q=l. /3=(3)-1/4, ro=(3t1/2. 

Hon of the Lie algebra in terms of Poisson brackets 
being given by 

M j = (Jj J2)1f2 cos(w1 - W2), 

M2 = (J1J 2)1f2 sin(w1 - w2), 

M 3 =t(J1 - J2), 
(4.2) 

I=(Mf +M~ +M~)1(2=Hj(2w). 

Consider now the polar case. Let H belong to the first 
family, j3 > 0, C(U) = 0, q = 1. The potential has a mini­
mum at rp=O, r=rocc j32 with a depth V occ j3-2 (see Fig. 
1), Unlike the Kepler problem, both J r and J ~ are de­
fined in the range (0, + 00). The motion takes place 
around the minimum and for a sufficiently low energy 
the system can be approximated by an isotropic har­
monic oscillator. So we expect a SU(2) symmetry in­
stead of the 80(3) symmetry of the regularized Kepler 
problem. If we defined M j as in Eq. (4.2) with J1 =J~ 

and J 2 =Jr we have a realization of the Lie algebra of 
SU(2); in some cases it is easy to prove that this reali­
zation can be integrated to give a global realization of 
the group SU(2). This is the case of the Hamiltonian 
(first given in Ref. 3)12 

H = -2
1 (p~ +~) - ~ + (j2(2111r2 cos2rptt . (4.3) 
111 r r 

A direct calculation of M;(J,w) shows that these func­
tions are differentiable throughout the energy surface 
H =E(- mk2j(2i32) < E < 0); this fact, together with the 
compactness of the energy surface, implies the inte­
grability of the Lie algebra realization to a realization 
of SU(2) (according to a well-known theorem by PalaisI3

). 

It is plausible that the other Hamiltonians in both fami­
lies (at least for q = 1) also share the same SU(2) sym­
metry. The isotropic oscillator (q =t) and the Kepler 
problem emerge here as rather exceptional cases. 

Finally, it may be interesting to investigate whether 
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TABLE II'. Hamiltonian in polar coordinates (r, <p,p~)-"Kepler" family. 

H= Z~ (p~+p~/r2) + V(r) + U(<p)/r 2 

] 
mk 

(H)=Jr+qJ~= ../-2mH -{3 

J(A)=_1_{A2+c + [(A2 +C )2+c ]1/2}J/2_E. 
f2q 1 1 2 q 

(U) = ± ~ tan-1 (Z{3.JzmW - Uo))+ G(U) ({3 > 0), U(<p) = 0 if (3= 0 
10 Zq r-2mW-Uo) 

{3?-O, q=n/n2>O, k>O (c 1,c2) real constants, {3=0 >c1=c2=O, q=l (Kepler) 

( 
c c) [( Cl c)2 C J-l IG'(U)I<B U+~+~ [Zm(U-Uo)]1/2 U+Zm+4m2{32 +~ 

. 1 [ ( 2) 2J 1/2 
C =0 C =_y4 G=O: V=-- k 2+ ~. 

1 ,2, r 2mr ' 

where 

_ L ..fUo - Wi v'VQ + Wi 
Cl' - Z{32 {31 Z ,(32 Z 

a SU(2,1) transitive realization can be defined in the 
negative energy portion of phase space; this would allow 
a geometric quantization9 of these Hamiltonians. 

For the time being, we checked that the Schrodinger 
quantization of the Hamiltonian of Eq. (4.3) shows the 
characteristic degeneracy of a SU(2)-symmetric 
Hamiltonian and the spectrum is the semiclassical 
one; both results should be confirmed in a geometric 
quantization. 

APPENDIX: ABEL'S EQUATION 

The equation 

f x f(y) dy =g(x) (A1) 
../x- y 

a 

is a special case of Abel's equation (or Euler trans-

TABLE II". Hamiltonian in polar coordinates-"Oscillator" 
family. 

](H)=J +qJ =!L-{3 
r ~ Zw 

J(A) =1: (A - (3) 
q 

V(r) =! mw2r 2 

<p(U)=± q-ltan-l(~ _1)1I2+ GW) ({3>O), U=O if {3=0 

See Table II' with cl = c2 = 0; W > 0 

( U )112 G = q-l tan-1 U
1 

- 1 : U(<p) as in Table II' 
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form). 14 When g(x) is absolutely continuous, the solution 
is given by 

or, equivalently, by 

f(y) = 1: g(a) + 1: fY 
Tf";y-a Tf a 

g'(x) dx 

";y -x 

(A2) 

(A3) 

In order that f(y) be bounded in a neighborhood of a it is 
necessary that 

g(a) = O. (A4) 

In fact, from If(Y)I<M (a<y<x), it follows that 

Ig(x) I = I f x ~(~ ~d: I < 2M vX-a" (A5) 
a 

andg(a) =0. 

If moreover we require that f(a) = 0, as in most of our 
applications, then g(x) must behave like (x - a)" with 
a> +t as x-a. In fact 

f(y);:<.!fY a(x-a)",-I 
Tf vy::. X 

a 

= ~ f 1 dt(y - a)"'-1I2(1_ 0-112 t"-I 

o 

=.; (y - a)"'-1I2 B(a, 1/2). 

E. Onofri and M. Pauri 
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wrp-ww=wip' 

w,.- tvr =wy, 
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Mx (_ 2mH)1/2(~ _ (32)172 

X [-PrP,. sinop + (mk - M~/r) cosopl, 

1 
(- 2mH)1/2(~ - (32)tl2 
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A graphical subtraction procedure for constructing the perturbative Green functions of light·cone finite, 
multiply localized products of fields is proposed. The existence of the Green functions as tempered 
distributions is proved, together with the properties of light·cone finiteness and localization on a line 
segment. The derivation of light cone expansions is sketched. but not treated in detail. 

1. INTRODUCTION 

A convenient operator expansion for displaying in 
concise form the light-cone singularities of products 
of fields would be one of the from1 

where N*[A(x)B()')] is a light-cone finite bilocal field 
(normal product), the OJ(x, y) are smeared out N* 
normal products, and the F j (Z2) are complex valued 
functions which are singular for Z2 tending to zero. 
In Ref, 1, an expansion of the form (L 1) has been 
shown to exist in a relatively simple example, that 
of the product A(x)A(y) in the perturbative A4 model. 
In that case, the F j are all powers of logarithms, and 
the OJ can all be expressed in terms of smeared-out 
light-cone finite normal products 

N*[a '" a A(x)a ,,0 a A(y)], 
1J.1 lJ. a VI Vb 

In certain respects, the construction of Ref, 1 falls 
short of a completely satisfactory realization of the 
program sketched above, To motivate the present work, 
it is useful to review the major deficiencies of that 
construction, 

(1) It depends on a rather unwieldy subtraction 
procedure, based on iterated application of Zimmer­
mann's identities2 relating short-distance finite normal 
products, Although the subtractions have a recursive 
structure reminiscent of renormalization, no prescrip­
tion for removing light-cone singularities on a graph­
by-graph basis is given, 

(2) It does not establish uniform localization of the 
formally bilocal fields appearing in the light-cone 
expansion, A reasonable definition (presumably not 
the only one) of "bilocal" would require OJ(x, y) to be 
localized on the line segment joining x to y, with 
o t (x, y) commuting with all z which are spacelike with 

a)Research supported in part by National Science Foundation 
Grant No. PHY 74-21778 A02. 

b)Research supported in part by National Science Foundation 
Grant No. MP 574-05783 AOI. 

respect to all points of that line segment. In the con­
struction of Ref, 1, the formal bilocals are indeed 
localized on a segment of the line passing through 
x and y, but unbounded growth of the localization 
segment with increasing perturbative order is not 
excluded. 

(3) The construction cannot be generalized to other 
products of fields, such as products of currents in a 
charged scalar theory, without encountering formida­
ble complicationso In Ref, 1, the analysis was consider­
ably simplified by the limitations to logarithmic light­
cone singularities and bilinear products of the basic 
fields and their derivatives, Such Simplifications 
could not be expected to persist for general field 
products. 

(4) There is no uniform (in all orders in the coupling 
constant) polynomial bound on the momentum-space 
growth at infinity of the vertex functions of the N* 
products defined in Ref, 10 Hand in hand with this is 
the necessity of increasingly many subtractions as 
one proceeds to higher orders, just as one finds for 
ordinary vertex functions in a nonrenormalizable 
theory 0 This suggests that outside of perturbation 
theory, the N* product may not be well-defined as a 
tempered distribution, requiring stronger large­
momentum cut-offs than are provided by Schwartz 
class test functions, Moreover, there will be no 
renormalization group or Callan-Symanzik equations 
for the vertex functions of such normal products, 
making expansions such as (L 1) of only limited use­
fulness in the phenomenology of theories with asymp­
totic freedom, 

In this paper we define light-cone finite normal 
products which avoid the first three of the enumerated 
difficulties. We develop a graph-by-graph subtraction 
scheme which allows one to define a quite general light­
cone finite normal product N*[nct>;(x + 8jO] localized , 
on the minimal line segment containing all x + 8 j i;, 
Our method comes tantalizingly close to complete 
success. For low order diagrams, we are able to 
maintain the desired control over the numbers of 
subtractions. We are unable, however, to establish 
convergence of the Feynman-parameter integral for 
graphs of arbitrary complexity without making addition-
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al subtractions. It is to be hoped that future investiga­
tions will yield the key to pushing the full program 
through to completion, 

This article is organized as follows. In Sec. 2 the 
formal outlines of our subtraction scheme are developed 
in conjunction with a study of certain one-loop, two­
loop and many-loop graphs. Later in Sec, 2, a precise 
formulation of the subtraction procedure is presented, 
and the corresponding convergence theorem is stated 
The proof of the theorem is given in Sec, 3, We con­
clude, in Sec, 4, with a brief discussion of light-cone 
expansions involving our normal products, 

2. DEFINITION OF N* PRODUCTS 

We wish to define vacuum expectation values 

(2,1) 

whe re <P i and Z/J j are inte racting fields, and (2, 1) is to 
be a tempered distribution in x, Pu '" ,Pm E: IR4 which 
is a continuous function of ~ E: IR and e i E: IR. Note that, 
by taking various ei equal, we may define light-cone 
finite products of several currents. ) Let f be a 
Feynman graph contributing to (2.1), with r the 
graph obtained by identifying all vertices x + ei~' 
and let fl., (q) be the propagator for a line l of r, 
{k J be loop momenta for r, and 

be line momenta for r, Then the unrenormalized 
amplitude for f is formally 

where li is the line of r which is incident on x + ei~ in 
f, We must introduce subtractions into (2,2L 

A. A one loop example 

Let A be a scalar field of mass m with A4 interaction, 
and consider 

(2,3) 

If r is the graph of Fig, 1 (the vertex V represents the 
coalescence of x + ~ and x - U, the integral in (2.2) 
becomes formally 

For e ,*0, (2.4) is regularized by the ~2 term in the 
exponential, but the integral diverges (at (111=(112=0) 
for ~2 = 0, Zimmermann's short distance finite normal 
product N 2 lA(x + ~)A(x - ~)] of Ref. 2 is defined for this 
diagram by subtracting from the integrand its value at 
p=O; using 
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FIG. 1. One loop graph. 

1 d 
F(p)-F(O)=j dT-F(Tp) 

a dT 

we obtain 

xexp i{ ..• }. (2,5) 

The first term of (2.5) is convergent for all ~, but the 
second still diverges for ~2 = ° (although of course it is 
finite-in fact, zero, -when ~ - ° in nonlightlike 
directions), The example suggests a method for defining 
light-cone finite products: Working in terms of 
invariants p2, P • ~, and ~2, one subtracts at p2 = 0; 
here this gives only the first term of (2.5). Of course, 
in more complicated graphs, similar subtractions will 
be necessary for sub graphs as welL 

B. Preliminary definition of N* products 

We now give a preliminary version of the renormaliza­
tion operation needed to define N* products; a final, 
precise ve rsion will be given below, Let r be a 1 PI 
Feynman graph for which each line l has propagator 

with Z, an invariant polynomial of degree P,; we write 
n(r), N(r), and m(r) for the number of loops, lines, 
and vertices, respectively, Suppose further that to 
each lPI I' c r we have assigned a subtraction index 
6(1'). Let I' be a lPI sub graph of r, let {kJ and {q,} be 
loop and line momenta for 1', and let] be forest of lPI 
sub graphs of 1', with Au '" AR the maximal proper 
subgraphs of I' in] and? =Y/A1A2 '" AR , Then define 
recursively 

Ip == 
J 

Here 

x exp i~, 'ql exp i Cl'l(tiio - (1- i€)~ - m~(l - i€»], 

(2.6) 

(2.7) 

(2,8) 
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for 6> 0, t6 = 0 for Ii < 00 In (206) if j is a vertex of 
Ai' P j denotes the total momentum entering this vertex 
from external and internal lines of y. Finally 

Remark: (a) t6 is in fact not well defined since its 
operand is not a covariant function for E > 0, and even 
if it were, it could not in general be written uniquely 
as a function of the invariants o Our refined definition 
below, however, gives an explicit formula for fr 
which avoids the difficulty. J 

(b) Ideally we would like to take 6(y)=d(y) where 
d(y) = 4n(y) - 2N(y) +L1EyPI is the superficial divergence. 
This choice, however, does not appear to give con­
vergence; we try to illuminate the problems in the 
next sectiono 

C. Two-loop and multi-loop examples 

Consider first the contribution to (203) from the 
graph of Figo 20 Here the forest formula reduces to 
iterated (1-0 operations for y and r; since y does not 
involve V and d(y) = 0 it is natural to choose Ii(Y) = 00 
Then P * has the form (ignoring E dependence) 

jnda l (1 - t6(rJ)[fl (a) + f2(a)e + 6131 (Q)Pi • ~ 
i 

(209) 

The at> a 2 subintegration is convergent because of the 
I' subtraction, but the overall integration of the 
11> . 0> ,14 terms is respectively logarithmically, linearly, 
and logarithmically divergent, and convergenL If we 
take Ii(r)=o [note d(r)=O], the first and third terms are 
rendered convergent (V is homogeneous of degree 1); 
the 12 term appears to be logarithmically divergent but 
for e * 0 it is regulated by the W(a)e term in the 
exponential, and for e- 0 it vanishes [compare 
J o~2rl exp(- e/t)dt]o Thus subtractions of minimal 
degree suffice to give a light-cone finite normal 
product here 0 

Observe, however, that the subtraction of the 
subgraph I' has led to P 0 ~ factors in (2.9)0 Our sub­
traction procedure (2.8) ignores these, thus oversub­
tracting as far as momentum power counting is con­
cerned o In general, oversubtraction at one level 

v FIG. 2. Two loop graph. 

r 
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v 

FIG. 3. Many loop graph. 

necessitates higher subtraction degrees at higher 
levels. 

This can happen to us. The contribution of Fig. 3 
to 

does not appear to yield a convergent amplitude if 
Ii(r) is chosen to be minimal (L eo, negative). Another 
way to view this difficulty is as follows: the a-space 
integral for P* in this case is similar to (2.9), but 
the function corresponding to W(a) vanishes in the 
interior of the integration region, and hence exp iW(a)e 
no longer regulates the term corresponding to 12(a)eo 
We conclude that we cannot systematically take 0(1') 
= d(y), in fact, we will need subtraction degrees which 
increase without bound with the order in perturbation 
theory. 

D. Final definition of N * products 

We will complete the definition of the P* operation 
by giving an explicit formula similar to that of 
Appelquist3 and Bergere-Zuber4 for the BPH P 
operationo Take r as in Sec. 2B, with y era 1PI 
subgrapho 

We introduce the standard combinatoric functions 
for y, i. e., fixing a vertex k and letting i, j denote 
vertices and s, t lines of y, we define 

U"(a)=6 n a/) 
T IrtT 

the sums running respectively over all trees T of y, 
all two trees T2 of y disconnecting i and j from k, all 
trees T of y for which the path in T from k to i passes 
through s in the same (+) or opposite (-) direction as 
s, and all sets T* formed by adding one line to a tree, 
such that the circuit in T* contains both sand t, 
oriented coherently (+) or incoherently (-)0 If J 
is a forest for 1', we follow Appelquist by introducing 
variables T x' A E J, and writing Ci 1= (n IE xE T~)al' 

J 
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V(CI', T) = nAE: } T~2n(A)U(a"), and 'f(CI', T) = T(a) for T = V, Y, 
or X. Finally, 

for any A E: J U {y}; the sum is over the maximal 
proper subgraphs )J. of A with )J. C J. Then we define 

Y' = n (- tW .») n z (; _a_)V(CI' T)-2 
) I.E:) TA IEr 'f ar, ' 

Here t~ extracts the Taylor series in T, centered at 
0, to order 5 (with t~=O if 6<0), r,=r, nA::",TA' 

pTVP=6V jjPj'P j , etc., andp j ·p j =P i op jo-(1-iE)pj·Pj, 
Pi' r, =piOr,o -Pi· r l , r,' rm= r,ormo - (1- iEtlr, ·rm , 

and similarly with r" rm replaced by ~" ~m' (For us 
the condition )J. ~ A includes the possibility )J. = A). We 
remark that (2.10), with ~j = 0 for all l, is the standard 
formula3

,4 for the P operation restricted to a single 
forest. 

We want to justify (2.10) by showing its relation 
to (2.6)-(2.8). Suppose then that either y is minimal 
in J or that we have justified (2.10) for all subgraphs 
of y. If we write 

Z j(q) =z ,(} a~jeXp(iq. r,) 1",0 

the integral of (2.6) becomes a Gaussian; evaluation 
of this integral yields (2.10) with no tT operator 
with T r = L By (2.7) this completes thJ case y E: J. 
[We omit a detailed derivation of this result. The 
only difficulty is in evaluating certain combinations 
of matrix products which arise on completing the 
square in the exponential. 

One observes, however, that these same expressions 
arise in a similar recursive evaluation of the P opera­
tion, and that in that case the amplitude may also be 
evaluated in one step by a rescaling of integration 
variables4

; comparison of these formulas for the P 
operation then yields an evaluation of the needed 
expressions. ] 

Finally, if y E J, we must apply the Taylor operator 
of (2.7), (2.8). It is quite complicated to apply (2.8) 
directly since factors Pi 'P j and Pi '};, can both be 
generated by the spin terms; instead, to simplify 
our scheme, we scale with T> the momentum variables 
in both the p'rVp and pTY;Y (but not pTy~) terms, leading 
immediately to (2.10). The effect of this choice is that 
for certain terms, involving overall P • ~ factors re­
sulting from the r derivatives, we are undersubtracting 
in comparison with (2.8). However, the increased 
subtraction degrees we use suffice to give convergence 
despite this undersubtraction. 
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Definition 2. 1: The * -renormalized amplitude for 
r is 

(2.11) 

with Y/ given by (2.10). Furthermore, (2.1) is defined 
by expanding in graphs and applying (2. 11), wi th ~ I = 8 j ~ 
if l is incident on x + e i~ in t; ~, = 0 otherwise. 

E. Statement of results 

We want to investigate Definition 2.1 for the case 
(2.2) arising in the N* product of several currents as 
well as for general ~. Thus let V be a fixed vertex of r 
and {L 1> ••• L k} a partition of the lines incident on V; 
let H denote the set of 1PI y c: r such that y intersects 
at most one L j' and suppose for convenience that all 
lines incident on V are oriented into V. Then we consi­
der the hypothesis: (H) ~, = &j E]R4 if l E: L;0 = 1, •.• , k); 
~ ,= 0 otherwise 

The justification of Def. 2.1, proved in the next 
section, is: 

Theorem 2.2: There exists a choice of subtraction 
degrees 5(y) such that the integral in (2.11) is 
absolutely convergent for E > 0, and defines a tempered 
distribution in PH '"' , Pn which is continuous in E, ~ for 
[? 0 and ~ c: JR4N; if (H) holds we may take minimal 
subtraction degrees (6 (y) = d(y)) for y EH, and continuity 
then holds in E> 0 and t E: JR4k• 

Remnrk 2.3: (a) In fact we give an explicit recursive 
formula for calculating o(y) but do not claim that the 
result is optimal. 

(b) The subtractions for r itself are the terms of 
(2.11) with rCJ. Now consider (2.2): from (2.10), 
a counterterm is a linear combination of integrals 

(2.12) 

where P is a polynomial in p. The Fourier transform 
in P of the integrand in (2.12) is supported at x j 
= x + c j~; it follows from the definition of Y is that C j 

is a convex combination of 81' •.. , 8n , and hence the 
counterterm is (formally) supported on the minimal line 
segment containing all points x + e j~' Again, at least 
formally, this gives the same localization for 
N*(n<l>i(X+ ei~))' Some further discussion is given in 
Sec. 4. 

3. CONVERGENCE OF N* PRODUCTS 

We will divide our proof of Theorem 2,2 into several 
sections for clarity. 

A. Decomposition of integration region 

We follow Breitenlohner and Maison. 5 Consider a 
triple (C, B, a), where C is a maximal forest of 1PI 
subgraphs of r, B c C \ {r}, and a is a map aSSigning to 
each y E:C a line a(y) in y ~Y/Al "', Ap, with {Ai} the 
maximal subgraphs of y in C. The region f) (C, B, a) 

C {CI' I Cl'l? O} is defined by 
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nfl., ifZ=a(y), 
rCI.E] 

(3.1) 

and the restrictions 

fr"'O; l"'tr ",O,yr:f-B, yt-r; fr"'1,y E 8;1 "'f3!"'0. 

(3.2) 

We occasionally write f3!" 1 if 1 E a(C), Exactly as in 
ReL 5, we show that (2,11) becomes 

(3,3) 

where I/r is given by formula (2,10) for I/r but with 
'Jc , :1c 

_ t6(A) replaced by (1 - t6 (1.)) for >...ciJ3. 
TX T). 

B. Evaluation of,), and T derivatives 

We first observe that the combinatoric functions 
V(= Vr ), V, etc, satisfy 

(P1)W" is independent of TI. unless >... ~ M; Wrm=O 
unless lines 1 and m are in 11; if (H) holds, Em W;m ~m 
=0 for yEH. 

(P2) for any>... E C, we have homogeneity in the 
variables T~2 and {O'! IZE A}, with deg V=n(A), deg X 
=deg Y =deg V=deg W" = ° unless 11 C A; deg W" = 
- 1 if 11 C A, 

(P3) V, V and ( n T~)Xrs have the form p(O', T2)Yr1, 
r,sEA 

and WI. the form P(a, T2) (CPO n Vl. i )-l, with P a poly­
nomial and {Ai} the maximal subgraphs of A in C ' 
[On first inspection it appears that WI. might contain 
factors T-,} for 11 C A, but this possibility may be 
eliminated using I]x IT,,=o= UI'[jI./" (Ref. 6), etc.] 

(P4) ~~ is a positive semidefinite matrix, 

To evaluate the spin terms it is convenient to use 
o/ar l = n TI.O/Or,. Differentiating and setting r=O, 

A3 1 

we see that nz, is replaced by a sum of terms 

Qo(p) n ~ 0')1h (Y) n Ih r(W~) n (Xlm n ~) "'m, 
rE( rEC\H I,m 1.3',m 

(3.4) 

where Q o is a p~lynomial~ndlh(y),ji1r(W~) are 
monomials in {YiJ and {(!!",Os=Zt W;t~t}, respectively. 
If (3.4) arose from n(a/or,Yi (with p~ '" p,) and if cr 
=deghl y , then 

k{y) = E pf - 2 E aIm - ~ C" '" 0; 
IEr l,mEr ,,~y 

"f/-H 
(3.5) 

note that we have used (P1) to restrict to y r:f-I! (taking 
I-! = () by convention when (H) is not assumed), and have 
grouped the factors of T as suggested by (P3). The only 
odd powers of T now occur in ~ ()''' so we use 
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here [n] is n/2 [resp. (n -1)/2] if n is even (resp, odd). 
Thus, if we insert (3.4) into (3.3), the result vanishes 
unless 0(>...) '" k(>...) for all >... E B, and otherwise is a sum 
of terms 

(3,6) 

xexpi (PTVp+pTY~-tE~WI.~-~O'lm~(l-!E)]1 E 
I. ~I.=o, I. 8 

TJ>.,=l, Art'E 
(i (I.)(k (I.) 

and 

)

=[(O(>"')_k(A»/2]+1' ifO(A)",k(A), A'l-B, 

el. =0, 0(>...) < k(>...), A'l-B, 

'" [(0(>"') - k(>...»)j2], A EB, 

(3,7) 

We next carry out the 7) derivatives. Then, aside 
from the exponential, (3.6) becomes a sum of terms 

Q 6(P)f) (U-2)1h1 (f) Y)1h 2 (f) V) n [Ih~ (Owr!;llh;(o ~ TWr~)] 
1''1- H 

X n (Ox1mn7)"'m, (3.8) 
',m 

Here (with some abuse of notation) n(U)-2 denotes 
some product of (0/07) operators on 0-2 , 1h 1 (OY) 
a monomial in the 7) derivatives of {Y is}, etc. We 
still have cr=deglh~ and, if deglh~= c;, then from (P1) 

~ c~"'Eey. 
YCA Tel. 

~ 

Further, (P3) implies that (3.8) has the form 

with P a polynomial, and (P2) shows that (3.10) is 
homogeneous in 7)~1, {O', Iz E A} of degree 

[Note that each 0/07)/. contributes + 1 to (3.11).] 

Now set 7)1' = 0, y E8. For 11 EC we let p. denote 

(3.9) 

(3.10) 

jJ. modulo its maximal proper subgraphs in in B; then 

so that (3.10) becomes 

Q(P, ~ )R(a, 7) 

n
A
Ui)q(l.) 
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where R=plry.o,co B' Moreover, (3.12) has degree 
(30 11) in ,,-

C. Change of integration variables 

Introduce the variables{/ x, i3,}by (3.1)0 By standard 
arguments7 

where Ej,.?- 1, and j(v) =n(v n 11) is precisely the degree 
of homogeneity of fj1i- in {O' III E v}, if v EB, or in 1]~1, 
{O' I Il E v} if v rf B. Thus the homogeneity of (3012) 
implies that when multiplied by the Jacobian 
nt~(X)-1 it becomes a sum of terms of the form 

whe re I F I <; 1 and 

b).?- N(X) - 2n(X) - ~ (c" + c~) - 6 aim + ex> 
"t'\ l.mEX 

with equality in (3.14) if X EB. 

(3.14) 

In order to be able to do the tr integration explicitly 
we write 

By (P2), A is independent of tr; recall that ~s· ~t 
=(l_iE)-1 (~~~~(l-iE)-L'~t), so by (P4)lmA 2 ?-0 
and we take 1m A > O. Then 

exp (- f ~~ ""'0= J: dW[- itr(l- if)/ 1T]1 /2 

xexpt i{tr (l - iE)w2 
- WA» (3.15) 

Since (3.15) is absolutely convergent, it suffices to 
prove absolute convergence and E, ~ continuity of 
(3 06) with the substitution (3.15), i. e., using (3.13), 
of 

J dwnd/-L(1]).)ndi3,nt~).-ldt).t~/2Q(p, OF(t, 13,1]) 

x exp{i(pTy~ + wA) exp{itr(pTyp - M(l - if)]}. (3.16) 

Here Y = fr1 11 is independent of tr , 

and the integration region for 13, t is (302). 

D. Estimates for convergence and continuity 

To verify absolute convergence of (3016) we note 
that F and the first exponential are bounded by 1, 
the second exponential by exp(-EtrM)o When these 
bounds are inserted in (3 016), the resulting tr integral 
can be done explicitly if br > 0 to give r(br + t)(EM)-(br+ ll2J ; 

thus we need only the estimate (verified below) 
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where a>~, a). < 0 if X EB and a).> 0 if X rtB 0 On the 
other hand, we may evaluate the tr integral in (3.16) 
directly to give 

It is easy to verify that Y / M is uniformly bounded; 
hence7 for any Schwartz test function ~(P), 

is a continuous bounded function of t, 13,1] and E for 
E?- O. Using Lebesque dominated convergence and 
estimating as above we see that as a distribution 
(3.16) is continuous for ~ E R4N and E?- 0 [or, under 
(H), fort E R 4k ,E?-0]. 

It remains to verify that (3.17) and br > 0 can be 
ensured by suitable choice of <5(y)o Write <5(y) = d(y) 
+ D(y), and take D(y) =0 if (H) holds and y E H; other­
wise, choose <5(y) recursively so that for any forest 
J of proper lPI subgraphs of y, 

(3.18) 

Then if y EC, y rtB and q cB is a family of disjoint 
subgraphs of y, (3.14), (3.7), (305), and (3 018) imply 

2(by - 6b).)?- D(y) + 1 
q 

-:0 D("A)-:0 (c" +2c:J?-1 (3.19 ) 
'E<t "Cy 

(or ?- 2 since the b's are the integers): note y EH implies 
/-LEH for /-Ley, hence c,,=c~=Oo 

In particular, with y = rand q =~, (3016) yields 
br ?- 1. For X EB, define f). inductively by 

and note that for any y E C , 

where q cB is some family as in (3019). 
Choose e with 0 < 8 < IB 1-1, then 

Now (3.14) follows immediately, using (3.19) and 
(3.20). This completes the proof of Theorem 2.6, 

Remark: The basic requirement on <5(y) is that 
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(3.19) be satisfied; (3.18) can be modified to give 
somewhat smaller o(y) while maintaining (3.19). 

4. DISCUSSION OF LIGHT-CONE EXPANSIONS 

Having specified a graph-by-graph subtraction pro­
cedure for Green functions of light-cone finite, multi­
local products of fields, we now consider the question 
of whether such field products can be used to construct 
a light-cone expansion of the form (1.1). That this 
can be done is guaranteed (at least formally) by the 
recursive nature of the subtractions, and the broad 
outlines of such a derivation will be presented below. 
A detailed, rigorous treatment would require consider­
able additional effort and is probably premature. At 
this point, higher priority should be given to the task 
of improving the subtraction scheme so as to control 
the large-momentum behavior of vertex functions in 
a "renormalizable" way, 

As a caveat to future investigators in this field, it 
should be pointed out that in searching for a suitable 
definition of light-cone finite normal products one must 
always make provisiion (if only at the level of a 
plausibility argument) for an eventual light-cone ex­
pansion. This is because the latter, by relating normal 
products to ordinary products of fields, allows one to 
establish, almost immediately, the legitimacy of the 
normal products as localized, covariant operator 
fields. 

As mentioned above, the crucial property of our 
subtraction scheme which leads to an expansion (1.1) 
is its recursive nature, expressed in Eq. (2.6). That 
formula must be understood in the following sense: 
[hY is to be written in the standard a-parametric form, 
namely (2.10) with y omitted from the final product 
over It E J, and t6

(Y) is to be understood as a Taylor 
series in T Y' We see that IjY will then have the general 
form J 

Ij; =exp[iF(YY)od~M~(P, ~)G~(a, en, (4.1) 

where {PJ is the set of external momenta of y, ~l = e,~ 
are assumed to be nonvanishing only for I incident on 
the normal-product vertex, ~ is a monomial, and 

Following Zimmermann2 in his derivation of algebraic 
identities relating momentum-space integrands, we 
may iterate (2.6) to obtain 
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!l;r =Z;AIj~(YJ(7l(lj; (y»)" (4,2) 

where y is the smallest element of J containing the 
normal product vertex and J (y) is J restricted to y, 
The index a runs through the terms of (4.1), with the 
factor ~(j), ~) exp [ijJT(¥, Y)o~ incorporated in (Ij}\j[y»). 
and G~(a, ~2) included in (Ij](y»).' Integrating over a 
and summing over all rand J, one obtains an identity 
for Green functions which one can write in the shorthand 
form 

Nt( t'I cf>i(X + ei~) ,.1 

= n cf>j(X + ei~) +"'Lt J dry F r (71, ~2) 
1=1 r 

(4.3) 

where the derivative operator Dr may contain factors 
~ • a/ax as well as a/ax"', and the

i 
subtraction degrees, 

which may be greater than minimal. 

Extracting powers of If and In ~2 in F r (71, ~2), and 
applying the LSZ reduction formula to obtain an opera­
tor relation, one obtains a multilocal, light-cone ex­
pansion generalizing (1.1). Since, for any y, I¥' Y I <;; 1 
[see Remark 2, 3(b)), the support of F r (71, ~2) is contained 
in 171 I"" 1. The localization of N*(fI cf>j(x + ej~) on the 
line segment connecting x + emln~ 1'0\ + emax~ then 
follows from the operator light-cone expansion by 
mathematical induction in the perturbative order. 
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A time dependent generalization of the multiple scattering 
formalism8

) 

Joel I. Gersten 

Department of Physics, City College of the City University of New York, New York, New York 10031 
(Received 22 December 1977; revised manuscript received 10 March 1978) 

The multiple scattering formalism is generalized to include the restricted class of time dependent 
potentials in which each scattering center is moving with an arbitrary, but constant, velocity. 

The multiple scattering formalism 1
,2 has proven to be 

a valuable tool for analyzing problems in atomic and 
nuclear collision theory and solid state physics. The 
theory, as generally applied, expresses the wavefunction 
for scattering from a collection of N targets in terms of 
the transition matrices of the individual targets. 
Previous formulations of the method have been 
restricted to the case of stationary scatterers. In this 
paper the multiple scattering formalism is generalized 
to a limited, but useful, class of time dependent pro­
blems in which each target may be moving with its own 
constant velocity. 

Consider the interaction of a particle with N target 
centers each moving with constant velocity v n' The 
recoil of the targets will be neglected-an approximation 
that is warranted for heavy targets and low enough 
proj ectile energies 0 The nonrelativistic Schrodinger 
equation for the problem, in units where Pi = m = 1, 
is 

[ 
il p2 A' J 

iat -"2 -;;iUn(r -vnt~'l1(r,t)=O, (1) 

where [Un(r) 1 are the targets potentials. Generally U n(r) 
will be centered around some arbitrary origin r = Rn' 

Let us introduce the Galilean boost operators 

Bn(t)=exp(iVn .t3), 

where {3, the generator of the boost, is the Hermitian 
operator 

1 f3=1f (pt - mr), 

where we have temporarily restored atomic units. Bn 
has the properties 

(2) 

(3) 

BnrB~l = r + vnt, 

BnpB~l=p+mvn' 

(4a) 

(4b) 

and 

(4c) 

The function Bn'l1 is simply the wavefunction of the 
system viewed from an inertial reference frame in 
which the nth scatterer is at rest. The potential of Eq. 
(1) may be wr itten as 

6 Un(r - vnt) =6B~1(t)Un(r)Bn(t). (5) 
n n 

a)Research supported by City University Faculty Research 
Award Program grant No. 11684. 

Upon successively transforming one's frame of 
reference to different scatterers one may arrive at an 
intuitive set of multiple scattering equations. These 
transformations are illustrated symbolically in Fig. 1 
where we show the scattering as viewed from the 
laboratory frame and from the frame in which target 
1 is at rest. Similar diagrams may be drawn where 
other particles are at rest. Figure 1(a) depicts the 
incident and outgoing waves for each scatterer as viewed 
in the laboratory system. The incident wave for a given 
target is constructed by superimposing the outgoing 
waves from other targets and adding this to the free 
wave, q,. In Fig. l(b) we redraw this diagram as viewed 
from a frame in which 1 is at rest. It is in this frame 
that a simple relation exists connecting the scattered 
and incident waves. The hypothesized equations, which 
will be justified later, are 

'l1 (t) = q, (t) + 6B~1(t) J J G~(t, t')Tn(t' ,til) 
n 

X'l1 n(tll) dt' dt", (6) 

which expresses the total wavefunction in terms of a 
free wave, q" and a sum of scattered waves from the 
various targets. Here 'l1 n(t) is the scattered wave 
arriving at the nth target in a frame in which the target 
is at rest. Since we are using transition matrices in 
our formalism, it is clear that ,p n(t) will propagate as 
a free wave. Physically 'l1 n(t) is formed by superimpos­
ing all free waves in the problem. These include the 
original incident wave q, plus those free waves emerging 
from the other scattering centers. It satisfies the 

a 

FIG. L The scattering process as 
viewed from the laboratory frame, 
(a), and from a frame in which tar­
get 1 is at rest, (b). In the latter 
frame the scattering off target 1 is 
Simply described. The frames are 
related to each other through the 
Galilean boost operator, B j • The 
small arrows associated with each 
scattering center depict the incident 
and scattered waves at that center. 
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equation 

FIG. 2. A collision viewed 
from the laboratory frame, 
(a), and from a frame in which 
a target n is at rest, (b). 
The collision is elastic in the 
latter frame but not in the 
former. 

>It (t)=B (t)<I>(t)+2:;B (t)B;;(t)J-JG~(t,t')Tm(t',t") 
n n m n 

""'n 

(7) 

The free retarded propagator has been denoted by G~(t, 
t') and obeys the equation 

(ia~ -p;)G~(t,t')=O(t-t')' (8) 

The transition matrix, T m(t,t'), appearing in Eqs. (6) 
and (7) is defined through the relation 

Tn(t', t") = UnoU' - til) + UnJ G~(t', t)Tn(t, til) dt. (9) 

It must be emphasized that in Eq. (9) Un is not dependent 
on time. Thus the solution to the time dependent 
multiple scattering problem has been reduced to a 
knowledge of the ordinary transition matrices for a 
single target. 

In the above equations we have elected to work in a 
time representation, as opposed to the more standard 
energy representation. Even if the incident wave, <1>, 
were taken to be monoenergetic, the various scattered 
waves would surely contain admixtures of states with 
many different energies. This is illustrated in Fig. 2 
where a scattering event is viewed from the laboratory 
frame and from a frame in which the target is at rest. 
The target behaves as if it had infinite mass since its 
velocity is unchanged. 

Equations (6) and (7) are the conjectured multiple 
scattering equations. Let us now prove that they 
satisfy Eq. (1). Inserting Eqs. (5) and (6) into the left­
hand side of Eq. (1) and using the facts that <I>(t) obeys 
the free Schrodinger equation, and that i(a/at) _p2/2 
commutes with B~l(t) leads to 

Q= z- -- -2:;u (r -v t) >It(t) (
. a p2 ~ 
at 2 n n n 

=~B~l(t)[J dt'Tn(t, t')>It n(t') - UnBn(t)<I> (t) 

- UnJJ G~(t, til) Tn(t" ,t')>It n(t')dt' dt"] 

-2:;'B-1(t)U B (t)B-1(t)JJG (t t")T (t" t') mn n n n m 0' m, 

X >It m(t') dt' dt" , 

where we have used Eq. (8\0 Using Eq. (7) and re­
grouping terms leads to 
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-U JJ·G+(t t'lT (t' t")>It (f")df'dt"} nO' n' n • 

Finally from Eq. (9) one is able to show that Q vanishes 
identically, proving the validity of the equations. 

As a simple check on the equations, in the limit 
where all velocities go to zero, the Galilean boost 
operators reduce to identity operators and Eqs. (7) and 
(8) collapse to the conventional time independent 
multiple scattering equations. 1,2 

In order to obtain an explicit solution to the above 
equations one must resort to a particular representation. 
Two representations are convenient. The first is the 
familiar plane wave representation. The matrix 
elements of the boost operator are simply 

(10) 

Alternatively one may employ the boost representation 
in which the boost operators are diagonal 

(11) 

The eigenfunctions are obtained by integration of this 
differential equation and are given by 

(12) 

They form a complete orthonormal set, i. e., 

(13) 

and 

(14) 

The free propagator, in this representation is 

(b, t I G~ Ib', t') = - i6(t - t')6(b - b') 

[ ib
2 (1 1)J xexp"'2 T -7' . (15) 

The matrix elements of the boost operator are simply 

(b, t IBn(t) Ib', t) = 6(b - b') exp(ivn ·b). (16) 

While it is not the purpose of this paper to present 
detailed applications of the time dependent multiple 
scattering formalism, let us outline some possible 
problems that are amenable to study using it. In atomic 
physics such problems as charge exchange between 
ions and/or atoms, and ionization and excitation by 
heavy projectiles can be approached by letting N = 2. 
It is interesting to note, in this regard, that in the 
special (and nonphysical) case of one-dimensional delta 
functions some analytic solutions to these problems 
have recently been obtained. 3,4,5 In solid state physics 
such problems as beam foil excitation or stripping may 
be approached. Also processes in which there is an 
intense deposition of energy may be studied, as it may 
be assumed that the atoms of the solid will freely expand 
from some period of time. 

The present exposition has been limited to the case 
of particle scattering, but it is clear that a parallel 
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development exists for electromagnetic scattering. 
Using techniques developed here it should be possible 
to discuss the scattering of electromagnetic waves 
from an exploding (or imploding) system of fragments­
a problem of some current interest in the laser fusion 
problem. 
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Variational principles on rth order jets of fibre bundles in 
field theory a) 

victor Aldaya and Jose A. de Azcarraga 

Fisica Matemcitica. Facultad de Ciencias. Salamanca. Spain 
(Received 8 August 1977) 

The Hamilton and the modified Hamilton variational principles in classical field theory are studied for 
physical systems described by Lagrangian and Hamiltonian densities depending on arbitrary order 
derivatives of the field. These principles are established on the fibre bundles J '(E), J l()' -,(E», 
J l'()' -l(E». This is accomplished by defining an appropriate Poincare-Cartan form. This form is also 
required in the definition of the associated symmetry problem and in the explicit construction of the 
Noether currents. 

1. INTRODUCTION AND MOTIVATION 

The geometric formulation of the variational princi­
ples in field theory has aroused special interest on ac­
count of its applications to local field theories. Since 
the early work of Dedeckerl on the variational calculus, 
the subject has attracted the attention of many au­
thors. 2- 16 Basically, the starting point of the geometric 
approach to the variational principles is the definition 
of the Lagrangian density as a function on a fibered 
manifold, the bundle J"(E) on the r-jets17 of a (vector) 
bundle Eo For the Lagrangian densities usually con­
sidered in field theory, it is sufficient to use the I-jet 
formalism. 2-7, 9,12,13 The Lagrangian theory thus con­
structed leads to the customary equations of motion and 
is suitable for the study of its general invariance 
properties. 2-11,13,14. 16 

The usual (r= 1) Lagrangian theory is, however, 
clearly inadequate for the study of more general situa­
tions where the Lagrangian density depends on higher 
order derivatives of the field and, even more so, for 
the study of theories which present a nonlocal charac­
ter. These are not uncommon in physics; for instance, 
the recently introduced Melosh transformation, 18 which 
is required in hadronic matrix elements of otherwise 
local interactions (such as eo mo inL), has a nonlocal 
structureo This nonlocal character is a common fea­
ture of the so-called "canonical transformations" which 
may be used to introduce symmetries which are not ap­
parent in the original (local) formulationo 

With these questions in view, we shall perform in this 
paper a systematic study of the variational principles 
allowing the integrand in the action integral to depend 
on an arbitrary number of derivatives of the field. For 
a theory described by a Lagrangian density, the de­
pendence on an infinite number of derivatives (L eo , 
y - 00) would give it a nonlocal charactero In general, 
the infinite limit may not be reached, but we can ex­
pect that the necessity of introducing nonlocal operators 
will manifest itself in this scheme at lower orders o 
For instance, and in the case of a canonical transforma­
tion where the nonlocality is a consequence of taking it 
exactly, the symmetries introduced will retain an ap­
proximate validity at finite orders of its corresponding 

a) Paper partially supported by the I. E. N., Madrid. 

power expansion. This will be shown explicitly else­
where, 19 where a specific example is consideredo 

Our analySiS of the different variational principles 
starts with the Hamilton /JYinciple (Principle I) from 
which the Euler- Lagrange (EL) equations are obtainedo 
The derivatlOn of the simple EL equations for a La­
grangian density L Y depending on higher order deriva­
tives of the field may be accomplished by using JY(E) 
as the definition space of L Y; this formalism has already 
been considered (see, e. g., Refs. 11 and 12). The 
modified Hamilton principle (Principle II) makes use of 
the Poillcm'e- Cm-Ian for 111 0 The use of the POincare­
Cartan form is specially useful in the globalization of 
the EL equations and in symmetry considerations, as 
it was first emphaSized by the work of Garda and 
Perez-Rendon (see, e. g., Refs. 8 and 7). However, 
for general Lagrangians L Y, Principle II requires a 
nontrivial generalized Poincare-Cartan form o This is 
given in the present paper, where the regularity con­
dition for the equivalence of both Hamiltonian princi­
ples is also established. 

The Hamiltonian equations are also obtained in the 
general case from Principle II by writing the POincare­
Cartan form in terms of a scalar Hamiltonian density. 
As a preliminary step, Principles I and II are applied to 
Lagrangian theones defined on J 1(JY-1(E», and the con­
nection with the variational principles on JY(E) is ex­
hibited by using the appropriate Lagrange multipliers. 
Then a Hamiltonian density is defined on the dual fiber 
bundle of Jl~F-l(E» -JY-1(E), Jh(JY-l(E» which leads 
to the Hamilton equations o The Legendre transforma­
tion establishes the equivalence between the EL and 
Hamilton equations. 

Finally, we devote particular attention to the Noether 
theorem, of fundamental importance in many physical 
applications. Its general formulation is now made possi­
ble by using the general Poincare-Cartan form pre­
viously defined, and the explicit form of the conserved 
currents is given in the different formalisms. 

This paper is organized as follows: In Sec. 2 we 
briefly review the Hamilton and the modified Hamilton 
principles for the usual (lowest) case Jl(E) and set the 
notation" Section 3 is devoted to the study of the two 
variational principles on JY (E) and to the Noether 
theorem. Section 4 includes the Hamiltonian formalism 
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and the Hamilton equations at lowest order and in Sec. 5 
the previous variational principles, POincare-Cartan 
form, and Noether theorem are analyzed on JI(JT-I(E) 
and Jh (J-l (E). The numbering of definitions and 
principles inside the different sections is arranged in 
a way which facilitates the comparison between the 
different formalisms introduced o 

2. VARIATIONAL PRINCIPLES ON J 1 (E) 

Let (E, ,U, 17) be the vector bundle whose module of 
cross sections r(E) is composed of vector valued func­
tions 1) with arguments on M, the Minkowski space. In 
particular, r(E) includes the fields which describe the 
space- time evolutwn of the particles of the theory and 
provide the support of a unitary representation of the 
Poincare group. Thus (our notation is similar to that 
of Refs. 4, 7, and 8) the points of the basis ;VI are 
labeled by their coordinates x", IJ. (v, p, 'T)) = 0,1,2,3; 
the bundle E is the product :1i@R"0R i , where C\: is the 
spinorial index of the field (for instance, 0=1,2,3,4 if 
if; is the Dirac field). The index i will account for a 
possible additional inner symmetry [such as, for ex­
ample, SU(3) 1. Thus, the coordinates of l/J are 
(X",V"i); we shall omit the index i hereafter. Finally, 
17 is the usual Cartesian projection of E onto M. 

Definition 2,1: Let (J1 (E), ;U, 171) be the vector bundle 
of the first order jets associated to E [Jl(E)=E, 17°=171, 
A Laj[Yangian density density L 1 is a real valued func­
tion on J! (E) and accordingly of the arguments 
(\''',y'',.\'~) which constitute a system of canonical co­
ordinates of J1 (E). In general, and due to Poincare in­
variance, L 1 will not depend explicitly on x"o 

Proposition 2,1: The I-jet prolongation of l/J, jl(if!) 
= ij,! is the only section of (JI(E), J1, 171) such that jl is an 
inj ection of r (E) into r (J1 (E) and 

e'" I $1 (t,1) = 0, (2.1) 

where e'" is the set of I-forms defined on Jl(E) by 

e"'=dy"-yl~dx". (2.2) 

In what follows we shall simply write I" to indicate the 
restriction to cross sections. 

Proposition 2.2: Given a vector field X on E, X 
EO r(T(E), its I-jet prolongation through the injection 
jl is the only field jl (X) = Xl on Jl (E) such that it is an 
infinitesimal contact transformation (ict), i, e. , 

Lxle"=A~el\ (2.3) 

where L"i- is the Lie derivative with respect to Xl. Thus, 
the Pfaffian system (2.2) is stable under the one­
parameter group generated by X10 

Thus, if X has the form 

x=x,,_o_+x,,~_ 
ax" ay" , 

Xl will be given by 

xl=X+x",_a­
" ay~' 

Using (2 0 3), A; and X~ may be found to be 

'" ax'" ",ax" 
AB= ayB -y" ayB' 
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(2.4) 

(2,5) 

(2.6) 

- ax" ax" 
X"'--- "'--+A" 8 " - ax" - Yv ax" BY" 

ax'" ax'" B '" (aX" aX" B) 
= ax" + ayB y" - Yv ax" + ayB y" ' (2,7) 

[Usually, X"*XV(y"') and ilxv/ilyB=O, 1 
Definition 2,2: Given a Lagrangian density L 1, the 

Hamilton functional II is the application of r(E) on R 
defined by 

II(l/J)=j~I("')(M)LI(jI(l/J»7TI*w 'f1 if!E.r(E), (2.8) 

where 7T H W is the prolongation of w on J1(E) and w 
=dxoi\dx l i\dx2i\dx 3 is the volume 4-form on M. Since 
7T h W only has components on AI, we shall write just w 
henceforth. L 1(j1(1/)) is a function of y'" and its first 
order derivative, Le., y~=a"y". 

Principle 2,1 (Hamilton): The critical sections 
(trajectories) of the variational problem are the solu­
tions of 

or 

where X is a vector field on E which generates a one­
parameter transformation, A its parameter, Xl the 
vector field on (J1(E) which is the I-jet injection of X 
(in general, we denote jet prolongations with a bar), 
Lxi the corresponding Lie derivative, and (jl (IP)* the 
dual ofjl(l/J) acting on forms, 

As is well known, (2. 9) leads to 

(EL)Il/J=O, (2, 10) 

where (EL)1 is the usual Euler- Lagrange operator 

IP (EL~ UI(IP)1*eil;~ - a:~ (~;~)), (2011) 

The space of solutions of (2,10) will be called U; , 
Definition 2,3: Given a Lagrangian density, the 

Poincare-Cartan (or Hilbert) form e 1 is defined by 

01 =n+n', 

where 

(2,12) 

n=Llw, Q'=e"'i\n"" (2.13) 

aL 1 n =-- e e = (-)"dx°i\0·,i\dX"i\00,dx 3 (2,14) 
O! a},~~' JJ, 0 

Because of (2.1), e l is equal to L lW on I-jet extensions 
ifil, and thus (2,9) may be written using (2,3) as 

(Ol)¢(X) == L Lxi e 1 = 0, (2,15) 
"I(M) 

Definition 204; Given the Poincare-Cartan form 
e l on Jl (E), the modified Hamilton functional It! is the 
application of r(JI(E) on R defined by 

(2.16) 

PYinciple 2,2 (Modified Hamilton principle): A cross 
section is critical iff 

(2,17) 
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Since in the above expression [compare with (2.9) and 
(2.15)] Xl is of the general form 

Xl =X'" _a_ +X'" _a_ +X'" _a_ 
ax'" ay'" '" ay~ 

(2. 18) 

(2.17) may be written in the form 

(2.19) 

where i xl denotes the inner product and the identity 
Lx=ixd+dix has been used. 

A straightforward calculation from (2.19) leads to 
the known result that, for Lagrangians satisfying the 
regularity condition, 

(2.20) 

The space U'l of the critical cross sections as defined 
by (2.17) is given by 

(2.21) 

with Y ~ = a ",y '" (this condition comes from the coef­
ficient of X~). Then Uz =U /1 and the variational princi­
ples 2. 1 and 2.2 are equivalent [for an intrinsic formu­
lation of (2.20) see Ref. 7 J. We shall always assume 
the regularity condition is fulfilled. 

Definition 2.5: A transformation of the physical 
system described by L I is a symmetry when it leaves 
the equations of the motion invariant. Thus, an ict x! 
generates a symmetry transformation if 

L X1(Lw)-dt:.=0 (2.22) 

on any I-jet prolongation IP, where t:.= t:."'e", is a 3-
form whose coefficients do not depend on y~ (this 
guarantees that the original and the transformed 
Lagrangians differ in a four divergence which does not 
alter the EL equations). In particular, dt:. may be 
absent (this is the case for the Poincare generators). 

Theorem 2.1 (Noether): If X! generates a symmetry 
transformation, then 

d(ixI01
- t:.)1~1=0 (2.23) 

5 

for all sections I/JE. U1
• The proof is immediate from 

(2.22) using (2,19). 

Remark: When the two variational principles are not 
equivalent (the "regularity condition" is not satisfied) 
it is equally simple to define the symmetry transforma­
tion and the Noether current associated with it from 
0 1

• To do this7 it is only necessary to replace (2.22) by 
(Lx! 0 1 - dW x 1) = 0 and (2.23) by d(ixl 0 1 _ wx l) I 1=0, 
where w x l is a 3-form. I/J 

3. VAR fA T10NAL PR fNCfPLES ON J r (E) 

We proceed now to extend the above considerations to 
generalized systems which depend on arbitrary order 
derivatives of the field. 

Definition 3.1: Let (JT(E), M, rrT) be the vector bundle 
of the rth order jets associated with E. A generalized 
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Lagrangian density L r is a real valued function on Jr{E), 

of arguments (x", yO<, Y~l' ... , Y~l"'''')' Note that, as is 
customary, the usual covariance of the Lagrangian will 
require the use of nonindependent components on Jr{E). 
\\i:l shall keep implicitly this trivial redundance inL T 

and therefore in the expression of the tensor fields. 

Proposition 3,1: The r-jet prolongation of I./!, Y(I/J) 
==1l, is the only section of (JT(E),M,rrT) such thatjT is 
an injection of reEl into r(JT(E) and 

e~ ... " lir=O, s=o,l, ... ,(r-l), 
1 5 

(3.1a) 

where 

eo. -d '" '" d " IJt ..... /Js = Y1J.t" •• /Js - YJ.Lt· •• J1. s tL x 0 
(3.1 b) 

Proposition 3.2: Given a vector field on E, its r-jet 
prolongation X" through the injectionjT is the only vec­
tor field on JT(E) such that it is an ict, 1. e. , 

s=O, 1, .•. , (r-1), 

(3.2) 

For instance, if X is given by (2.4), its 2-jet prolonga­
tion is given by 

- - a - a 
.x2=X +X~a<' +X~" ii" 

y" Ylw 
(3.3) 

and a calculation shows that x~ is given by (2. 7) and 
that 

(3.4) 

from which X~v is given by 

-" ax~ "ax~ A" 8+A"'~ Il 
X IL ,,= ax" - y"~axv + /l"Y" /l"Y",,' (3,5) 

Definition 3.2: Given a L T, the Hamilton functional 
r is the application of r(E) on R defined by 

/T(I/J) == f,T(oi)(M) CW{I/J)w. (3.6) 

Principle 3.1 (Hamilton): The critical cross sections 
are the solutions of 

f(M,uT(I./!)]*{LxT(Cw)}=O 'f/ XE r(T(JO(E))), (3,7) 

1. e., I/J E U; iff 

UT(I./!)]*{E (_)5 dx"I.~:dx"5 (3.8) 

as may be derived from (3.7)0 

Definition 303: Given a Lagrangian denSity L T, the 
POincare-Cartan form (2,12) is now generalized to 

E{=L Tw+S1', 

where 

s=O,l, .•• ,(r-l) 

V. Aldaya and J.A. de Azca'rraga 
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and the A's satisfy the equations 

,(r)"1·'·" I w -dr."1···" I 
I\.Q S I/Jr - >l"Q S lilY' s=l, ... ,(r-l), 

(3.12) 

(3,13) 

The above expressions define the 51~1··· ". and e r 

forms on cross sections of Y(E); this will allow us the 
definition of the mOdified Hamilton functional (3.17) 
which is defined on r(Y(E»). However, one might ask 
whether it is possible to define e r on each point of the 
bundle. This is easily done for the Hamilton principle, 
where it is sufficient to substitute y~, y~~, ••• for the 
terms oy"/ox", oJ'~/ox", ... which appear in (3.14) to 
obtain an expression for the A's directly defined on the 
bundle. 

On cross sections, and for s = 0, 1"." (r- 2), 

,(r)"1·""s"l =-~(~- +'~"1··."S") /\", "r d ~ ~ " /\", • 
X uY""I ••• "s" 

(3,14) 

In particular, if r = 1, no A's appear in the definition of 
e 1[(2.13)], For r=3, for instance, 

+()'" (o~)() 
va II a" ", y"va 

(3.15) 

where 

A(3)""1 3=-~£. 
" " dxa oy ~~a ' (3.16) 

(3)"1 - ~(~ -~~) A" .3-- dx" ay'" - dxc aV" • 
~v ~ JJ.VO' 

Definition 3. 4a: Given the Poincare-Cartan form e r
, 

the modified Hamilton functional I'r is the application 
of qr (E)) on R defined by 

(3. 17) 

Principle 3,2 (Modified Hamilton principle): A cross 
section is a trajectory iff 

(or)"r(Xr) = f LxY<::/ = ° "iI xr E: r(T(Jr(E))) 
.Y(M) 

(3.18) 

with 

xr-x,,_o_+'bx'" a 
- ax" s.o "1···"s aY~I •• '''s 

(3.19) 

(3.18) may be written as 

ix Y dE{ l<br = 0, (3.20) 

A tedious but straightforward calculation shows that 
the first r equations (those corresponding to the coeffi­
cients of X~ " .. ,X~ , .... ) may be written in the form 

1 1 ~r 

-;--s '" OY"1 

(

0 0" 

/ O~ ••• 
aY"l···"r 
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(3,21) 

When this system admits only the trivial solution, 
i. e" the generalized "regularity condition" is satis­
fied [the above expression leads to (2,20) for r = 11, 
the r-jet prolongation condition is implemented, and 
then the coefficient of X'" immediately reproduces the 
Euler- Lagrange equations (3, 8). In this case U; = U" 
and again the variational Principles 3.1 and 3,2 are 
equivalent. 

Definition 3.5: As in Definition 2.5, an ict X Y gen­
erates a symmetry transformation if, on any r-jet 
prolongation 7jt, 

(3.22) 

where A= A"()" is a 3-form whose coefficients do not 
depend on y ~1"'''Y' 

Theorem 3,10 (Noether): If ~ generates a sym­
metry transformation, then 

d(ixrer-A)I~r=O (3,23) 

for all sections WE: UY 
• . L 

Proof: 

Lxy(L Yw) = Lxy(eY - 51') = Lxrff - Lxr51' 
s s s s 

=ixrdE/ +dixyer
- LxYU', 

s S S 
(3,24) 

Now, since the first term of (3,24) is zero for the r-jet 
prolongations of the elements of U; [(3,20), (3,8)] and the 
third is also zero on r-jet extensions [(3,10), (3,2)1, 
(3.23) follows from (3,22), • 

Using 

(3,25) 

the conserved quantity i-XY(/ may be written in the form 

the last term may be omitted since it disappears in 
ixr6Y !~r, 

(3,26) may be written in a perhaps more familiar 
form using the Hodge (dual) operator *. Defining 

and taking its exterior codifferential 0 - *d* we obtain 

oj = * d(ixreY) = divj = 0, 

where the conserved current takes the form 

(3.29) 

Of course, (3.27)- (3, 29) are evaluated on the r-jet 
prolongations of the solutions of the Euler- Lagrange 
equations (space U;), An overall minus sign is some­
times conventionally introduced in (3.29). 

4. FIRST ORDER HAMILTONIAN FORMALISM 
AND HAMILTON EQUATIONS 

In this section we apply the vector bundle formalism 
to the usual Hamilton equations in classical field theory, 
To do this, we must first define the Hamiltonian den-
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sity H in this formalism, The independent variables 
are now the fields and their conjugate momenta. Thus, 
the appropriate space for the definition of H will be 
JI* (E), dual of JI(E) - E, which for later convenience 
will be written as JI* (J'l(E). Given a coordinate system 
(x", yIX , y~) in JI(J<l(E) and the corresponding dual 
system (x", yIX , 1T~) for J1*(JO(E), the Legendre trans­
formation DL 

D L :1j;I-DL (</}), 1j;IEJ1(Jl(E» (4.1a) 

is defined by 

1T~(DL(</JI»= :;~ 1,,1' (4,1 b) 

As we have already done in previous expressions, we 
shall omit the argument when no confusion arises, 

Given a Lagrangian L I on JI(JO(E», we may now 
proceed to define a Hamiltonian associated to it, which 
we shall do in a Lorentz invariant manner, 

Definition 4,1: A "Hamiltonian" HI is a scalar real 
function on Jh(Jl(E» defined by 

HI=y~1T::'-Llo (4,2) 

In terms of HI, the Poincare-Cartan form (2. 12) 
may be written as 

el=1T~dyal\(j,,-Hw. (4,3) 

[Of course, e 1 may be defined without explicit recourse 
to L from an f! defined on JI*(Jl(E) and the Liouville 
form 1\"=1T~dya as e=1\"/\ (j,,-Hw.l 

With e l defined on J*(Jl(E» [(4,3)], (2,16) is re­
placed by 

I'1(<j;I*)=j~I*C\f)el 'd </JI*Ef'{JI*(Jl(E»); (4,4) 

(2,17) by 

(6I'1),,1*(Xh )=!I* Lxhel'dXI*Er(T(Jh(Jl(E))))" 
" (,If) 

and (2,19) by 

ixhdell"h=oo 

Writing 

X1* = x"-~ + xa~- + X" _a_ 
ax" oy" "01T~' 

(4.5) 

(4.6) 

(40 7) 

a simple calculation shows that (406) is nothing but the 
Hamilton equations (as in the Lagrangian case, the co­
efficient of X" may be seen to lead to a trivial identity) 

(4,8) 

When the Legendre transformation is a diffeomorphism, 
substitution of (4.2) into (4,8) leads again to the I-jet 
prolongation y ~ = a" y a and to the Euler- Lagrange 
equations (2. 10). 

5. VARIATIONAL PRINCIPLES ON J' (jr-' (E)) 
ANDJ' * (J'-' (E)) 

We now proceed to extend the variational principles 
2.1 and 2.2 from JI (Jl (E» to JI(,y-I{l<;». Our aim here is 
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to provide a new generalization which is suitable for the 
Hamilton equations since-as we have seen in the pre­
vious paragraph-this requires a formalism where co­
ordinates and momenta can be adequately defined, 

The space J1(r- I (E» is the vector bundle of the 1-jets 
associated to the fibre space (J .. -I(E), M, 1f "-I). The co­
ordinate system for J1(J .. -I(E» will be defined by 

(~" "" a • a a " ) 
I'" ,y ,y"I"" 'Y"I"'''r-l,g, ",g"I'"'''' ,g"t'''''r-I''' • 

We now extend the results of Sec, 2 to this case. 

Definition 5.1: A Lagrangian of type L I,r-I is an 
application of Jl(J"-1(E) on R. 

(5.1) 

Proposition 5.1: The 1-jet prolongation of l)ir-t,jl(l)ir-l) 
= ~I is the only section of (JI(Jr-I(E», M, 1T) such that 
i l is an injection of r(Jr-I(E» into r(JI(Jr-I(E») and 

Ol,r-I~I'"'' 1-=<11 =:00, s=O,1, ... ,(r-1), (5,2) 
S Ibr .. 

where the structure forms Ol,r-I (we shall simply write 
B) are now 

B" -d " " d " "I"'" - Y"I"'" -g"I"'" " X • s s ~ 
(5,3) 

As is clear from (5.2), the jet prolongation condition 
requires 

" a " g"I'''''so''= "Y"I'''''s' 

Proposition 5.2: Given a vector field on Jr-I(E), 
X r -I E r(T(J"-I(E»), its 1-jet prolongation through the 
injectionjl is the only fieldjl(X"-I)=xr-t

1 
such that it is 

an ict, i. e. , 

s=0,1, ..• ,(r-1),. (504) 

where the 1-jet extension of xr- I is determined from the 
general form of xl,r-I, 

xl,r-! =x,,_o- + x ,,--1_ + ... +xa ___ 0 __ 
ax" 2\''' "1''' "r-I o"a . .' "1"'''r_1 

+Xa_O_+ ... +xa ._0'--__ 
'''aga "I"'''r-I'''oga • 

t j.l /.Ll···j.lr .. l, /.L 

(505) 

(5.4) and (5,5) lead to [compare with (2,6) and (2,7) I 

A a ;"1·00" ,_ (iX~I'oo" oX" 
/.L <.lOQj.l;/3 S ____ 5 _get 

I 5 a $ "1'''1.1. ," a a y V1·~·IIS' S YIJ1"~""s' 

so that, for 1-jet prolongations, the components 
X~t'" "r-t' " of (5, 5) are written 

Definition 5.2; Given a Lagrangian density L I, r-I) 
Hamilton functional/I, r-I is the application of 
r(J"-I(E» on R defined by 

/1, r-I (</Jr-!) = fjl (lbr - I ) (lJ) L I, r-I (j I (1j;r-I»w 

'd 1j;r_1 E r(J"-I(E». 

V. Aldaya and J.A. de Azcarraga 
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Principle 5.1 (Hamilton): The trajectories of the 
variational problem are the solutions of 

J M [jlW-l) ]*{Lx"-1 1(L 1. r-1W )} == 0 V xr-1 E r(T(J'"-l(E»). 

(5.9) 

(5.9) leads to a set of "disconnected" Euler- Lagrange 
equations of the form 

aL 1 ... -1 ..!!:.-.( aL 1.r-l )_ 
., '" - d I> a ex - 0, 
vYv"'" X gVl"'v,IJ. 

s:=0,1, ••• ,(r-1), 
1 s s . 

(5.10) 

withg~l'OO" lL:=aILY~l"'"' s' s 

Definition 5.3: Given a L 1 ... -1, the Poincare-Cartan 
form is given by 

(5.11) 

where 

aL 1.r_l 
n~l·"IJ.s~ 8IJ.~ O~l"'I>S" ""8,,", 

og~l"'''s'''" 
(5.12) 

It should be noted that the definition given here for the 
n's is a straightforward generalization of (2.14) and 
no different from (3.11) since for I-jet prolongations 
that formula would not contain A'S. 

Definition 5.4: Given 0 1•r-1 on Jl(Jr-l(E)) the mOdified 
Hamilton junctional I,l,r-l is the application of 
r(Jl(Jr-l(E))) on R defined by 

I'l,r-l (ljJl. r-l) ~ J",l,r-1 e 1,r-l V IjJl,r-l E r(Jl(y-l(E))). 

(5.13) 

PrinciPle 502 (Hodjfied Hamilton principle): A cross 
section is critical iff 

(l5I't,r-l) 1 _t(X1• r - t):=j L 1 r_101,r-l:=0 
Ib ,r w1.r.1(M) X' 

vxl,r-1E: r(T(Jl (J'"-1 (E)))). (5,14) 

The critical sections are thus the solutions of 

i xl, rot del, r- 11 ",I, r-l == O. (5. 15) 

A calculation from (5.15) leads to the following system 
of equations [which come from the coefficients of 
X~t'''l>s'''' s:=0,1, ... ,(r-1)1: 

(5.16) 

When (5.16) admits only the triVlal solution (regular­
ity condition for L l,r-1), the I-jet prolongation condition 
is satisfied, and then the remaining equations [from 
the coefficients of X~l0o, IL , S == 0,1, •.• , (r - 1) 1 re­
produce (5.10). ThUS, if this regularity condition is 
fulfilled, Principles 5.1 and 5.2 are equivalent. 
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Definition 2. 5 may now be extended to L I, .. -1, and the 
corresponding theorem is obtained: 

Theorem 5.1 (Noether): If X~-11 generates a sym­
metry transformation [LX;::-I1(L 1, .. -lw) - d6.= 0, where 
6. = 6."" e I> and 6."" does not depend on the g's], then 

d(ixr.;11e1,r-l_ 6.)1;r:1.1=0 V ljJr-1E:u1•r- l • (5.17) 
L 

Following the already usual steps, the form of the con­
served current turns out to be (on ~1, ljJr-1 E U1, r-l) 

r-1 
j<l,r_lll>_ L1,r-1x,," + ~ (XC> _g'" .,x")O""l"·IL.1> - ~o tJ.teceus J.J.t··°tJ,s. Q: S c 

(5. 18) 

To derive the Hamilton equations which obey the 
variational principle 5.2 we introduce the definition 
space of the scalar Hamiltonian density, J1*(J'"-I(E)). 
Its corresponding coordinate system is given by 

(x" y'" y'" ••• y'" '1T'''" 1T""l,I>".1T""I· oo ""r-1o 1» (5.19) , 'J.J.l ~ /..t.l Q 0 0 ,:.1.,._1' 0;' 0: 0: " 

The Legendre transformation DL: Jl(Y-l(E)) - Jl*(Y-l(E)) 
is now defined by 

DL : ljJl,r-l_ DL(</!1,r-1), (5.20) 

1T~I"'''s' ""(DL (ljJ1. r-l)):= ~L-. 
ogl>t'''I>.,,," 

(5.21) 

Definition 5.5: A scalar Hamiltonian density is the 
real valued function on J1*(Jr-l(E)) defined by 

(5,22) 

In terms of H, the Poincare-Cartan form (5.11) is 
given by 

(5.23) 

To obtain the set of Hamilton equations it is now 
sufficient to adapt (5. 13) to the new definition space. 
Substituting zp1*.r-l for zpl.r_l and 

a r-I 0 
x 1*,r-l=x,"_ + ~ X'" ----oxl> _J '"1'"'' oy'" 

s=o s '"I'" '"s 

~1 '" H."" (} 
+0 X ",1 ""1>1"',,".1> 

s~o u1T", S 
(5.24) 

for Xl. r-t, direct calculation from (5.15) gives 

oH _ oY~I'''''s 
a1T~l'" "so '" - ox" ' 

(5. 25a) 

aH a1T""l"'"s''' 
oY~~.""s :=- - ax"" s=0,1, •.• ,(r-1). 

(5, 25b) 

When the Legendre transformation is a diffeo­
morphism, recombination of (5. 25a) and (5. 25b) again 
reproduces the set of equations (5.10). 

Clearly, the set of Euler- Lagrange equations (5,10) 
is not equivalent to (3.8). The reason is obvious: Since 
L I. r-1 is defined on ,,1 (J r - I (E)) it will not correspond 
to the usual generalized Lagrangian density depending 
on a field and its r first derivatives, but rather to a 
Lagrangian density depending on several tensor fields 
and their first derivatives. However it is not difficult 
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to relate C (Definition 3,1) to the Lagrangian density 
L I,r-I (Definition 5,1) and to prove that both formalisms 
then lead to identical results, This can be performed 
by observing that the cross sections 1jJI, r-I 

E: r(JI(Jr-I(E))) can be projected onto those 1jJr E: r(Jr(E)) 
by means of the trivial projection 

g (x" y" g" ., 'g ) 
, " IJ. JL1°ClO J.L.,..I' J.L 

(5,26) 

so that a L r may be redefined on JI(Jr-I(E)) by identify­
ing its components with the last part of (5, 26) and in­
jecting them into JI(Jr-I(E)), We may now apply the 
variational principle 5,1 to L r incorporating the con­

straint y :1"." -I = g~I··· "r-2' ". The natural way to in­
corporate a constraint in a Lagrangian formalism is 
the use of the Lagrange multipliers. 20 Thus, we de­
fine on J I (r-I (E)) 

r-I 
L' L + '" "I'"'' ( " " ) = L.J::I." s Y"I'·'''s -g"I"."s-I'''s' s.o 

(5, 27) 

Substitution of L' into (5,10) gives a set of equations 
for L coupled by the Lagrange multipliers, and their 
elimination leads to (3.8), Q.E.D. 
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Vector bundles, rth order Noether invariants and canonical 
symmetries in Lagrangian field theory 
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We present a formulation of the "canonical" transformations of the Dirac theory by using the bundle of r­
jets associated with the Dirac vector bundle. This allows us. by means of a variational principle previously 
introduced, to study in a natural way (through an appropriate Noether theorem) the role which these 
"canonical" theories play in the definition of "new" symmetries. The limit r---; 00 corresponds to the 
equivalence between the canonical and the ordinary symmetries. 

1. INTRODUCTION AND MOTIVATION 

The analysis and motivation of the different trans­
formations of the Dirac equation (and also of higher 
order spin equations) has been the subject of continuous 
study since Foldy and Wouthuysenl introduced their 
transformation allowing invariants to be associated 
with certain dynamical variables (spin, orbital angular 
momentum) which in their usual Dirac form are not 
constants of the motion. Several so-called "canonical" 
transformations have since been introduced, and their 
implications considered from a variety of viewpoints. 2 

The last of these is the Melosh transformation, 3 which 
relates the "current" and "constituent" quarks4 and 
which, in so doing, provides an expression for the 
generators of the SU(6)w symmetry of the strong inter­
actions previously only known for those of its SU(3) sub­
group through the conserved vector current hypotehesis. 

Both the FW and the Melosh transformations present 
a feature in common: They lead to constants of the 
motion of the usual Dirac Lagrangian theory by starting 
with simple expressions which are constants of the 
motion in another theory, usually referred to in phy­
sical literature as the FW (or Melosh) "representation," 
this term indicating (Sec, 3), not only a mere change 
of basis but a new starting point used to define dynam­
ical quantities. In this paper we assume the task of 
identifying what this new starting point is and, as a re­
sult' the meaning of the canonical transformations 
(as, for instance, the FW transformation) when taken 
up to rth order will become clear in the context of 
Lagrangian field theory. 

This will be done by using the calculus of variations 
(Euler-Lagrange equations, Noether theorem) on 
J 1 (Jr(E)), 5 where Jr(E) is the bundle of the r-jets of the 
vector bundle E!... M, where in our applications E is 
the Dirac bundle Hi ,0: H'" ,,~ Aj.!!-;11. We follow the same 
notation of Ref, 5; in particular, (V is the spino rial 
index, i is a possible inner symmetry index lsuch as 
SU(3)] and Ai, the Minkowski space, is labeled by the 
coordinates x" > In general r (E), the module of the 
cross sections of (E, M, 1T), will include the support 
space of a unitary representation of the Poincare 
group. 

This paper is organized as follows. Section 2 is de­
voted to the formulation of the variational principle and 
summarizes the results 5 which are used in the ensuing 
discussions, In Sec. 3 a Lagrangian density L l,r on 

Jl(Jr(E)) is constructed whose space of solutions ULoo 
is unitarily related to Uf. ' the space of solutions 
of the ordinary Dirac equation, The additional sym­
metries will be introduced through the formulation 
of the Noclher theorem for L 1,00. This Lagrangian 
L 1,00 will be precisely the transformed usual Dirac 
Lagrangian, and in this way our approach will exhibit 
the mechanism by which the "canonical" transforma­
tions may be used to define "new" symmetries. Finally 
Sec. 4 summarizes the results and includes some 
comments on a possible description of "extended" 
particles. 10 

2. HAMILTON VARIATIONAL PRINCIPLE ON 
J I (J r (E)) 

The reader is referred to ReL 5 for all the results 
contained in this section. 

The starting point is the vector bundle E.!!- },j, with 
fibre of R" type (here E will be a globally trivial bun­
dle on M, 1T being the Cartesian prOJection). The 
coordinate system for E will be (x", -""'), where x" 
is a coordinate system for M and ,v'" is the coordinate 
system of the fiber part of E, 

In our variational principle the solutions will be 
given by cross sections of Jr(E) (in the limiting case, 
r will be allowed to go to infinity; for a differentiable 
structure on J~(E) see Ref, 6) rather than by sections 
of E as is the case for the usual variational problem on 
Jl(E)[ceJl(JO(E))J. Accordingly, the Lagrangian density 
L 1, rdefining the physical theory will be a real function on 
Y(Jr(E))_the usual Lagrangian densities, involving 
only first order derivatives of the field, are defined 
on Jl(E)_and we shall perform a first order variational 
calculus on JT(E)" 

The coordinate system on J 1(.!'(E)) will be given by 

(2.1) 

where w is the volume form on M, dxGA dx 1 
, dx2 

t\ dx 3
• 

for ,;r(E) and K~I"'"S''' are the "velocities" associated 
with \'~p"",,, Note that in this coordinate system\'~I"'''' 
is not necessarily 0" \'~""" 1 nor K~l°O'" "is e s. ... ,.. s... s' 
a "\\~I'oo"s' These relations are fulfilled only for jet 
prolongations: only for Gr(J))o:JT}c- {rl~rr r(Jr(I~))} 
is lhe first condition satisfied and only for {j' (Jr) 
~ ~rl}~ {JeT" .. r(J'(JT(E)))} is the second. 
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Given a L l,r on Jl(Jr(E» the action functionalll,r: 
r(?(E» - R is defined by 

(2.2) 

where w is the vol ume form on M, dx°" dxl 
" dx2

" dx3
0 

The variation IjJl,r of ll,r for a point of r(JT(E» is 
defined as the following linear application: 

(OIl, r).r: X r E r(T(?(E») 

- jM(l(ljt)]* {Lxrl(L l,rw)} (203) 

where xrl =j 1 (Xr)E r(T(JI(E»))) and (l(l/n] *L 
=L v (ljl» 0 (2 02) and (2 03) allow us to define the 
following 0 

Hamilton principle: The trajectories of the varia­
tional problem constituting the space ljl,r are the 
solutions of 

(2.4) 

(2 04) leads to the set of Euler-Lagrange equations 

aLI,T _~( aLl,r )=0, 

aY~looo"s dx" g~l'oo"S." 
s == 1, .. 0 , r, (205) 

where in this expression ~loo,"s," ==a"Y~l'oo "s' 

The Noether theorem may be formulated in a con­
venient form if we first introduce the Poincar~­
Cartan form 0 to define the mOdified Hamilton 
principle, which states that the solutions of the varia­
tional principle are the solutions of the equation 

(OId,T)~l,r(Xl,r)==o V XI,TE r(T(J1(Jr(E»», (206) 

where 

(2.7) 

and 

(2 0 8) 

In (20 8), e~l"o, "s is the structure form of the bundle 
Jl(JT(E» (Ref. 5, Eq. (503)] and n~l"·"s is the form 
used in defining the Legendre transformation (Ref, 5, 
Eqo (5.12)]. For "regular" Lagrangians, both princi­
ples lead to the same space of solutions and are thus 
equivalent. 

The Noether theorem and the corresponding Noether 
current may now be established: If ~l generates a sym­
metry transformation of the variational problem, i, e., 
Lxr.1(L l,rw ) =dt:.. (t:.. is a three form not depending on 
the g's), then 

d(ixr101,T_t:..)1;':1=0 V qlEljl,r. (2.9) 
s 

This leads, assuming t:.. = 0, to the following expres­
sion for the conserved (a"(j" - t:..,,) =0] current 
(on /ill, IV Elj/,r): 

(2.10) 

where X .. , X~I'''''S are the components of the vector 
field Xs on Jr(E). 
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3. SYMMETRIES AND "CANONICAL" 
TRANSFORMATIONS 

We now turn to the consideration of the symmetries 
of nonlocal type which are introduced by means of 
"canonical" transformations. For example, it is 
well known that, although 

(3.1) 

and 

(3 0 2) 

which generate the SU(2) (spin) and the U(6)w (currents) 
algebras, are not symmetries of the Dirac theory, the 
use of the FW and Melosh transformations allows the 
definition of a conserved mean spin and U(6)w (strong) 
algebras. More preCisely, we ask ourselves if it is 
possible to obtain-via the Noether theorem-nonlocal 
charges associated with simple (local) transformations 
of the Dirac vector bundle as, for instance, the vertical 
rotations on E. In this way, we shall show how the 
formalism of Sec. 2 may be used to describe a more 
general type of symmetries (L e., those given by in­
tegrals of nonlocal operators) which appear to be 
relevant in the physical world and whose existence 
seems to be related to a nonlocal structure of the 
hadronic particles themselves. In fact, there is no 
compelling reason, for instance, which requires the 
symmetries of strong interaction physics to be genera­
ted by integrals of local current densities. (Of course, 
there is also no reason why a Lagrangian approach 
should necessarily be relevant in strong interaction 
physicso) On the other hand, the variational principle 
on Jl(J"(E» of Seco 2 gives as solutions cross sections 
of r(E)-fields of the form {y\"(x), 1/J~(x), • •• , 
1/J~l"'''s(x)'''}-which indicates that, to know the 
phySical system in a point X o of M, we require, in 
prinCiple, not only the knowledge of 1/J"(xo) in that 
point, but the value of a certain field cl>'" of E in all the 
points of an open set containing X o (as is suggested 
by the interpretation of the cross-section of r(E) 
as the coefficients of a Taylor expansion about xoJ. 

Let L I, o( = L 1) be a Lagrangian density whose depen­
dence on the fields is of the usual form; it is then an 
application L 1,0: Jl(JD(E» - R. Consider now a differen­
tial ope rator IY on r(E) of order r, i. e., such that 

Dr: r(E) - r(E) (3.3) 

linearly and 

Dr: r:+l - ri(E), (3.4) 

where r~(E) is the submodule of r(E) of the cross 
sections which are zero at order s at x (i. e., the 
sections and their t first derivatives, t == 1, ... , s). 
Dr admits the following factorization: 
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which allows us to define the Lagrangian L I,' associa­
ted with D' as 

(3.5) 

such that for the I-jet prolongation of the cross sec­
tions (which is what is relevant in the Euler-Lagrange 
equations, see Eqs. (2.3) and (2.5)] 

L l"(l(,pr» =L l'°(l(OD,(i/;T))). (3.6) 

(3.6) shows, in the limit r- oO , the relation existing 
between the ordinary Lagrangian and the canonically 
transformed one; in that limit, D' (r - 00) is the 
canonical transformation or, more exactly, its adjoint 
Tt (which is defined according to the scalar product 
r(E)] and both theories are unitarily related, 

Let us apply the above scheme taking the Dirac 
Lagrangian and the Foldy-Wouthuysen transformation 
as an example. We shall perform the calculations in 
first order of the transformation, which will be suf­
ficient to illustrate the theory. In the coordinate system 
for J 1 (JO(E)) 

(3.7) 

(an obvious modification of (2.1) to accomodate the 
complex conjugation] the Dirac Lagrangian is written 

(3. S) 

The FW transformation1 is defined at first order by 
the application 

O(FW1)t{o=Oi}: J 1 (E) -JO(E) (3.9) 

such that 

(x", y", y~)oi(x", y" + (i/2m)(yk)~y~), (3,10) 

(x", Y,,*, y,,::)~(x .. , y,,*+(i/2m)Ya*k(yk)~) (3.11) 

(0', /3,1'=1,2,3,4; i,j,k,m=1,2,3; /-l,v,o=0,1,2,3L 
Accordingly, 

/(</i) = (y", 0 .. y"'), 

l(oi</i) = (y~ + (i/2m)(yk)gy~, 0 .. y" + (i/2m)(yk);a .. y~), 

g; .. (l(oI</i)) = 0 "y" + (i/2m)(yk)~0" y~ 

(3.12) 

where I i(.) means "restriction to I-jet prolongation," 
and L 1,1 takes the form 

1 ( k ° .. )ao r ('/4 2) (k ° .. m)a a " - 2m Ya*k I' I' I' r "y - t m Ya*k I' I' I' I' ,,"Ym 

(3,13) 

The Euler-Lagrange equations may now be derived 
with the result 

(3, 14a) 

where If 0= </it1'0 and </it represents the generic cross 
section of components y ,,*' Proceeding at second order 
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(we shall omit the explicit form of L 1,2), we obtain 

'0 (;r; i -,- k 1 {jkm- \ " 
1 .. 'I'-2m 'likY +Sm2 </ikmj'Y 

+m(lfi - 2~ lfik yk + S!2 (jkm</ikm) =0. (3.14b) 

It is immediately observed that the solutions </i of 
(3. 14a), (3. 14b) are the first and second order FW 
fields. In the limit r- 00 we would find the FW equation 
(io o - wyO)</i = o. 

To study the Poincarl! invariance in L I,' we require 
first that the action of the Poincarl! generators on 
J'(E) be defined. This may be accomplished with the 
help of the operator D' in the same way it was used 
for constructing L 1". Nevertheless, the action of the 
rotation and the translation subgroups on J'(E) 
coincides with the jet prolongation of the usual action 
on JO(E), Thus, if J(i) and PI,,) are the usual rotation 
and translation generators on JO(E), we define 
.IT (j) =j'(J(j») and P,(,,) = j'(P (,,»)on J'(E). 

The Noether currents of the theory are obtained 
from the following general expression (compare 
(2.10)]: 

(3.15) 

In our case, with L 1,1 given by (3.13), (3015) reduces 
to the first and third terms since 

oL 1,1 oL 1,1 
--= =0, 
Og"*.,, ag"*u,,, 

(3.16) 

_1 

Only the components on J ' (E) of X~a) contribute to 
(3.15), 

-, .. 0 ,,0 0 
X -X -+X -+x *--

<a) - (a) ox" (a) oY" (a)" oy,,* 

(3017) 

where 5 

V" ax" "oX" A" a A"a* 
Av= oxv -Y" oxv + aYv+ Ya*v' 

(3.1S) 

and 

axC/ oxJJ. axC/* axv 

AC/= _"" A*- y* a ay;r .'" aye' C/ a - 0 :Va - " v ~ 

ax" ax" a* ax_* axv 

A C/a*- -- _ "" -- A~ ~ -a '''a' ",*=-~---v,,*vo--o 
Ya*' Ya* uYa* Ya* 

(3,19) 

since the part of X on J' (E), X~, etc., corresponds 
to the jet lifting from the part acting on E. 

As a first illustration we evaluate the Hamiltonian 
density, Since the 4- translations have only components 
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on the basis M, X (I-') =o~ a/ax· on E, on J 1(E) and 
also on J1(Jl (E». Thus X'(I-') = o~ and the Hamiltonian 
density (whose charge generates the time translation) 
is given by (the minus sign is added for convenience) 

'0 _ '" aLl,l '" aLl,l 1,1 

-J(O)-g,o ag'" +ga,o ag'" -L 
,0 a,O 

(3.20) 

Since the fields appearing in (3.20) are solutions of 
(3,14), (3,20) is the usual Hamiltonian in this approxi­
mation, In the limit r- 00 (3.20) could be written 
either in the form I/!~WW'Y°lJ!FW or as lJ!~('Y0'YP +m)<PD 
{both expressions are unitarily equivalent since 
lJ! FW = (FW)lJ! D' the subindex FW defining the" FW 
representation"), 

For the rotations (corresponding to the total angular 
momentum J=L +S) we have, on J O(£), 

J _ J 3 i ( )",.Jl a i ( )8 a x (i) - tuOX oa + -2 Li 8 Y ::>::! - -2 Y8* Li '" -3 -• uX vy Y",* 
(3,21) 

and its jet prolongation into J 1 (E) is given by 

(3,22) 

where, for instance, 

Xli). = - Y~Eij~(i~ + yeii(Li)g, (3,23) 

In the above expressions L is the spin matrix for the 
Dirac fields and E the antisymmetric tensor (Elj~ = 0 for 
!J. = 0). Thus, the angular momentum charge densities 
are given by 

.0 {t i t.",}(5 ( ).){ i m,/,} -J(i)= lJ! + 2mlJ!k Y 2 + XAP t lJ!+ 2mY 'I'm' 

which for r- oo reads <P~W(i~FW+XFWA P)lJ!FW' FW 
representation of the familiar expression lJ!1(i~ 

(3,24) 

+XA P)lJ!D since L FW + (FW) L(FW)t and X FW= (FW) 
x(FW)t, Note that the invariance of L 1,1 under (3,21) 
requires lJ!k = Ok <p, as is the case of the first order 
FW - transformed Lagrangian. 

The conserved quantities, e. g., (3.24) and (3,20) 
are, of course, not new; they reflect the Poincare 
invariance of the theory at the given order and, as has 
been shown, these expreSSions are nothing but the 
usual ones in the FW representation. However, as 
mentioned previously, L I, 1 may be used to define 
conserved quantities at the given order of approxima­
tion. This is the case with the vertical rotations 

(X J)Y _ i ( )'" 8 a i ()8 a - 2' Li 8Y a--a - 2'Y8* Li "'-a--' y y",* 
(3.25) 

which act only in the fibers of the Dirac bundle E 
(hence their name). Although (3,25) do not lead to a 
constant of the motion of the L 1,0 theory, it is simple 
to see that they are conserved in the L I,T theory up 
to order (1/ m 2 )T. To obtain the charge denSities, we 
again apply the Noether theorem to L I, r and obtain 

-j~~=ilJ!tLilJ!+(terms of order 1/m2 
••• ) 

and, when r - 00 
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(3.26) 

VOlt ( 7) -j(j)=2<P LilJ!. 3.2 

since the fields of (3.27) are solutions of (rO - wyO)lJ! 
= 0, i. e., they are <PFW fields and we get, since I/!Fw 

=FWlJ!D' 

(3.28) 

where ~f,l is the "mean spin" of Foldy and Wouthuysen, 
which is conserved (as it is Xf,l A pl. 

Analogous considerations can be made to show how 
this scheme works for the Melosh transformation, 
taking 

X 1.(", )'" 8 a (3 29) 
3 =2Z ""'3 8Y ay'" ' 

X l '('" 0)'" 8 a (3 30) 
1 =2Z LJ~y 8Y OY'" ' 

as the components of a "rotation" acting on E which, via 
the Noether theorem, will lead to the conserved "strong" 
charges, However, the motivation for introducing the 
new symmetry operators in this way is less clear from 
the physical point of view, In fact, the U(6)w symmetry 
has its full relevance in the infinite momentum limit and, 
in that limit, the corresponding charges are already 
a symmetry, 7 Thus, other motivations have been in­
troduced (see the second paper quoted in Ref, 3 and, 
e, g" Ref, 8 and references therein) to justify the 
Melosh transformation, Some of these difficulties come 
from the fact that the infinite momentum procedure 
is a limit rather than a transformation, and accordingly 
it is not immediately clear how to account for it in the 
present framework, We hope to come back to this point 
in the future, 

4. SUMMARY 

The formulation of the variational calculus and the 
associated Noether problem on the vector bundle 
Jl(Jr(E» and, in particular, on J 1(r(E» has allowed 
us to give a precise definition of the "canonical trans­
formations, " often introduced in field theory, in a 
Lagrangian framework. This approach is specially 
relevant in showing the mechanism which allows the 
definition of new symmetries of the theory which were 
not apparent in its original formulation, As an illustra­
tion we have considered the case of the spin of a Dirac 
particle (3,1) which, by means of the nonlocal trans­
formation (FW)+ leads to the "mean spin"l SJI 

(4,1) 

These new charges 8M cannot be identified with space­
time generators acting on the Dirac bundle E on which 
the fields are defined. However, in our formulation 
they still admit the usual simple interpretation: they 
are the charges associated, through the Noether theorem 
for L l,r, with the generators (XJ)Y corresponding to 
the vertical rotations which act on the fibre space E in 
the usual way. 

In the case of Melosh a similar approach leads to 
the new conserved charges SU(2)w or U(6)w (bearing 
in mind the comments made at the end of the preceding 
Section), 

Finally, we would like to comment that the associa­
tion of a field q, defined in an open set about Xo (Sec. 3) 
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with the solutions (cross sections) 'l!~ of the variational 
problem might provide a description of an "extended" 
hadron particle. However, this association is not 
automatically guaranteed since the Whitney prolongation 
theorem9 esatblishes that if a cross section 'l!oo of J~(E) 
is a Whitney function of class C~(K) on the compact K, 
then q, is the same for all xoEK, Le., 'l!oo=r(q,), in 
which case we would be led again to a local description 
of the physical system. 
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Nuclearity of some spaces of Coo vectors in induced 
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We give conditions on irreducible unitary induced representations of inhomogeneous Lie groups ensuring 
nuclearity of the space of differentiable vectors. We study the consistency of these conditions. Finally we 
show that our conditions hold almost everywhere with respect to the Plancherel measure for some 
generalizations of the Poincare group. 

INTRODUCTION 
In this paper, we study the topology of some spaces 

of Coo vectors in unitary irreducible representations 
(UIR) U of inhomogeneous Lie groups GoT, G semi­
simple and T normal Abelian, In general G· T is a 
symmetry or a dynamical group of the system. 

The space f) of COO vectors with its topology appears 
as a "good domain of states" for many important observ­
abIes (essentially self-adjoint operators): for instance, 
those which are representatives of elements of the uni­
versal enveloping algebra U of G . T, or those which 
commute with a symmetric elliptic element of U . All 
these operators leave f) invariant and the topology off) 
is the coarsest, making all maps f) - f) in dU (U) con­
tinuous. It is a Frechet topology (f) is a complete count­
ably Hilbert space). If G· T is the Poincare group, it 
has been known for a long time102 that the "non-zero­
mass UIR" have nuclear spaces j) while the spaces f) 
of the "zero-mass UIR" (except the UIR induced from thE 
trivial orbit) are nonnuclear 0 

Physically, it is important to know some criteria 
ensuring the nuclearity off). Indeed, whenL) is a 
nuclear space, we have much information on the spec­
trum of representative of elliptic elements of U, but 
in principle we can use the nuclear spectral theorem 
and define a natural space containing all the generalized 
eigenvectors for each of the above observables, namely 
the topological dual f)' of lJ, In f) " we can extend the 
representation dU of U and use "infinitesimal methods" 
rigorously; for instance, we can define the "continuous 
basis" of physical states which are not elements of the 
initial Hilbert space. 

Another physical application of interest is to use the 
nonlinear representations of our symmetry group, these 
latter being connected with nonlinear differential equa­
tions, To build (and classify) ~hese representations, 
we have to consider cohomology groups of G' T in some 
tensor products of linear representations of G· T; 
then, in the case of representations possessing nuclear 

1J spaces, we can compute explicitly that cohomology. 

Independently, it can be interesting to know if the 
nonzero mass condition for nuclearity in the case of the 
Poincare group is a coincidence or on the contrary if 
this physical condition take a prominent part in the 
topological structure of j). Here, we study some se­
quence of groups generalizing the case of the Poincare 

group and establish thatLJ is nonnuclear only in "zero­
mass" representations. 

F rom a mathematical point of view, a few conj ectures 
have existed for a long time on this problem. 1.2 People 
thought to prove the nuclearity of f) with hypotheSis on 
the little group, We present here some examples which 
show that it is not the case, Therefore, we have 
searched for criteria on the inducing orbiL 

If G is compact, f) is always a nuclear space; thus 
one could think that this property remains almost every­
where true if G is only semisimple. We give here a 
counterexample, but we prove a similar result in many 
cases. 

In the first section, we specify our notation and give 
many examples, We state our criteria in the second 
section, Then we study the Plancherel measure for 
G· T, which shows that one of our assumptions on the 
representation holds almost everywhere; this forms the 
subj ect of the third section. Finally we apply in the last 
section our result in the case of the groups 
SL (n, (1;). JRn

2
, SO(p, q). JRp+q, generalizing the Poincare 

group. 

I. NOTATIONS AND EXAMPLES 
Preliminaries 

In this paper, we consider a Lie group G . T which is 
the semidirect product of a semisimple group G with a 
normal Abelian subgroup T. We assume that the action 
of G on T is regular, 1. e., that it satisfies usual con­
dition (see Ref. 3, p. 438, conditions 01 and °2 , for 
instance). Then we obtain all the UIR of G . T by the 
induction theory of Mackey. We use the following no­
tation: 

We denote by 9 + tthe Lie algebra of G, T, U(g+r) 
(or U) its universal enveloping algebra. If u belongs 
to U, we shall identify u with a right-invariant dif­
ferential operator on GoT and we shall denote by u 0 f 
its action on a C~ function f on G. 

If ~o is an element of T, the G orbit of ~o will be 
Q~o (or Q). 7T:G- n will be the canonical map and s 
a Borel section of Q to G. The stability subgroup of ~o 
will be H,o' T (or H· T) and ~ + r its Lie algebra. We 
choose a C~ function PH on G such that 

PH (xh) = [6H(h)/ 6c(h) )PH (x) (x E G, II E H) 

1881 J. Math. Phys. 19(9), September 1978 0022-2488178/1909-1881$1.00 © 1978 American Institute of Physics 1881 



                                                                                                                                    

(I5H and I5 c are the modular functions of the groups G 
and H). Associated with this PH is a quasi-invariant 
measure vH on G/H defined by 

J cj(x) PH (x)dc(x) = J C/HdvH(X)J Hj(xh)dH(h) , 

fE Cc(G) (Ref. 3, p. 475). 

We can put vH on n, and then we shall denote vn this 
measure. 

Let L be a UIR of H in a Hilbert space E; we denote 
by UL the (unitary) representation induced by the re­
presentation L x ~o of H' T on E. The representation 
space of UL is the space EL of E-valued functions f on 
G such that 

(il for each aEE, x- (j(x),a) is a Borel function on G, 

(ii) for all hEH, xEG, f(xh)=PH(h)1/2L(h-1)f(x), 

(iii) the integral 

J C/HPH(X)-l Ilf(x)112 dH(X) 

is finite (see Ref. 3, p. 374). And we put 

(UL(y)f)(x) =f(y-lX) , (UL(t)j) (x) = (x' ~o)(t)f(x), 

'fIY,xE G, tf: T, fEEL; 

we shall denote by E~ the space of Coo vectors for L 
in E and by E~ the space of C~ vectors for UL in EL. 
We shall denote dUL (dL) the representations of 
lj (g + t) (U (6)) on E~ (E.,) obtained by differentiation of 
UL(L). Now, T being an Abelian Lie group, we can write 

T=IR N x :!,:P XT"' x F, 

where IR is the real line, 2': the set of integers, T the 
one-dimensional torus, and F is a finite group. But 
E~ is exactly the space of Coo vectors for the restriction 
of UL to the connected component Go' To of theA identity 
e in G· T. We can assume that T=IR"XT" or T=IR" 
XZ" . 

A Go orbit n in i' being connected, n is a Go orbit in 
IR" x{ I] }, I] E. Z·. Then if X belongs to the Lie algebra 
of TO, 

dUL(X) = il](X)' Id. 

E~ is exactly the space of Coo vectors for the restriction 
of UL to Go' IR". 

In this paper, we assume that T is IR", we identify T 
with t * by 

HexpX)=exp[i~(X)l for all X of t, ~ of 1'=t*. 
We shall also consider a maximal compact subgroup 
K of G and denote by 1 1 a K-invariant Euclidean norm 
on IRn (if G has an infinite center, take K in the quotient 
of G by the kernel of the representation of G in IRn). 
Poulsen4 characterized E~: 

Proposition (Poulsen, 4 Goodman5
): E~ is the space of 

Coo functions f of G in E such that U' jbelongs to EL for 
every u inlj(g) and (1 + 1 1T(X) 1 2)m f(x) belongs to EL for 
every positive integer m. 

Proof: Following Poulsen, the first condition defines 
the set of C~ vectors for the restriction of UL to G, 
the second one defines the space of Coo vectors for the 
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restriction of UL to T since, if (X j ) is an orthonormal 
basis of t=IRn, 1 + 1 7T(x)1 2=dUL(1 +L;x~). We conclude 
with a result of Goodman, 5 

A few examples 

(0 E~ is a nuclear space if G is a compact group. 2 

If G • T is the Poincare group, E~ is a nuclear space for 
representations corresponding to the trivial orbit 
n={O}, and to a nonzero mass orbit. 2•1 

We could generalize the positive-mass case in 
SO(n,1)'IRn+l; E~ is also nuclear, 6 

We shall reestablish all these results in the last sec­
tion as immediate corollary of our criterion. 

(2) If G ' T is the Poincare group and n is a half light 
cone, E~ is nonnuclear. 2 The proof of this fact arises 
from the geometrical structure of n. 

If G ' T is the group SL (n, lR) • IRn, the action of 
SL(n,IR) on IRn being the canonical one, we see with the 
same proof that E~ is nuclear if and only if n is {O}. 
From the result of the third section, the set of UIR 
UL such that E~ is nuclear is of Plancherel measure 0 
for SL(n,IR)·IRn. 

(3) An example of nonnuclear space E~ with H ={e} 
was given in Ref. 6, Here is another example of com­
pact H with nonnuclear space E~: We consider the Lie 
group SO(n,1)' (IRn(n+l)/2XIRn+l), where SO(n,O acts on 
IRn(n+l)/2 via the adjoint representation inM(n,1) 
=IRn(n+l)/2 and on IRn+l canonically. We take a Cartan 
decomposition r + lJ of 00 (n, 1), X a (nonnull) element of 
IJ and ~ a vector in IRn+l such that 

exptX~=exp(tAH, U'O. 

Then we conSider the orbit n of (X, ~) in IRn(n+l) /2 

XIRn+l 0 The stability subgroup of (X, ~) is evidently 
SO(n-1), And we have, exptX(X, 1;) = (X,exp[tA]~). So 
if (Y, 11) belongs to n, (Y, f-L rJ) (f-L> 0) belongs to n. 
Therefore, E~ is not a nuclear space in this case. 2 

Remark: In all these examples, the orbit n is closed 
when E~ is a nuclear space and conversely, 

II. MAIN THEOREM 

Here is our main criterion: 

Theorem: Let us assume that 

(1) the orbit n is closed, 

(2) we can choose PH = 1 and (1 + 11T(X) 12)-1 E U(G/ H, 
dvH ) for a positive integer l, 

(3) Eoo is a nuclear space, Then E~ is a nuclear space. 

Before stating the proof of the theorem, we establish 
two lemmas: 

Lemma 1: Let 0' be the map defined by 

'f/ fc E~, 0' (j) =f(e) (e is the unity of G). 

Then Ci is a E~ valued function and 0' is a continuous 
map from E~ to Eoo. 

Proof: We have 

f(h) = PH(h)l/2L(h- 1 )j(e) , 'fI jEE~,'fI hc.H, 

D. Arnal 1882 



                                                                                                                                    

f and PH being Coo; O! fj) belongs to Eoo. Moreover, if X 
is an element of ~, we can write 

dL (X) (j(e» + X' (PH)1/21 e· f(e) 

= lim! ([ p1/ 2 (exptX)L(exptX) -I]j(e)} 
t.o t 

= lim!t [j(exp- tX) - f(e)] 
t·o 

This proves the continuity of O! : 

'duElj(~), "3V,WElj, M,M'>03 

IldL(u)(O' (j))lIE';; M 1I00(dUL(V)fIlE 

,;;M'lIdUL(W)fIIEL 'd fE E~, 

the last inequality being in Ref. 4. 

Finally O! is onto: Let v be a vector of Eoo, rr the 
canonical map from G to G/H, s a Coo section from a 
compact neighborhood U of rr(e) in G/H to G such that 
s(rr(e)) = e, Va compact neighborhood of e in G such 
that rr(V) CU. 

We define a Coo function p from VH to H by 

XE VH, p(x) =s(rr(x))-lx. 
Let CfJ be a complex valued Coo function with a support 
included in U and such that CfJ(n(e)) = 1. We put 

'd XE VH, cp(x) =p}/2(P(x))L(P(x)·l) CfJ(rr(x»lI. 

cp is a Coo function from G to E with compact support 
mod H, so cP belongs to E~, 7 and we have 

ct(lP) = v. 

Lemma 2: Let e be a finite-dimensional representa­
tion of 9 in a complex vector space V, II II a norm in 
L (V). If G is closed, then there exists a positive C, 
an integer m and an element ~o of G such that 

Proof: First, let us assume that Q is noncompact. 
Let ~o be a point of Q, where 1 ~I is minimal. Let 
r + (1 + ~ be a Iwasawa decomposition of 9. Each element 
x of G can be written: 

x = k' expHk where k, k' E K, HE (1 

(K is the analytic subgroup of G with Lie algebra r ). 
Let (~;) be a basis of eigenvectors for all the H of (1 in 
1R"=t*, letX be the compact set: 

X = { ~ E n 3 (2n + 1) I ~o 12,;; I ~ 12 ,;; (2n + 2) I ~o 12}. 

Let us consider the function (I 1 being K invariant): 

CfJH(t) = I k' exptHk ~o 12 =~ I (k~o' ~~) 12exp[2tX(H) L 
If n is noncompact, there exists H such that CfJH (t) 
> CfJH(O): then CfJH(t) is a continuous unbounded real func­
tions, and so X is not empty. 

Now if ~ = k' expHk ~o belongs to X , we have 

I ~ 12 = ~ I (k ~o' ~~) 12 exp[2X(H) ~ (2n + 1) I ~o 12 
~ 

or 

~ I (k~o, ~~) /2 exp[2X(H) 1 XI A(H)~ 0 

~ (2n + 1) / ~o /2 - ~ I (k ~o' U /2 ~ 2n 1 ~o 12, 
~/~(H) .0 
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then, there exists Ao such that 

I (k~, ~Xo)12 exp[2Xo(H)]~ 21 ~o 12 ~ 2/ (k~o, ~Xo) 12. 

Thus 

Xa(H) ~ ilog2. 

For each k of K, we put L(k)={X 3 (k~o' ~x)~O}. For 
each L, let 5 L be a subspace of (1 such that 

(1= n KerXEIl5L • 
~EL 

On 5L , we define a norm: 

I HI L = sup I x(H) I . 
xE L 

Let I / a norm on (1; thus, there exists a pOSitive M 
such that 

IHI';;MIHIL for all H in 5L and for all L. 

If ~ = k' expHk~o, there exists a (unique) Hl in 5L such 
that 

~ = k' expHlk~o' 

Then: 

(2n + 2) I ~o 12 ~ ~ I (k~o, ~x) 12 exp[2X(Hl )] 
X 

Let Jl the weight such that 1 Jl(Hl)1 = IHlI L . If Jl(HJ is 
positive, we have 

exp(2IHl I L ,;;(2n+2). f :(k~2 ~)12=(2n+2)M(k); 
m XEL 0' X 

if j.1.(HJ is negative, we write 

O=qJ~ (O)=~ l(k~0,~;)12 X(H). 
1 xEL 

or 

,;; tM(k)log[(2n + 2)M(k)]. 

Now, we can define a open covering of K· ~ by 

K • /;0 C U {k 1 ~o 3 L (k l) = L (k) 
~E~ 

and inf I (kl ~o, ~~) 12> i inf I (k~o' ~x> I'. 
XEL ~EL 

K 0 ~o being compact, we find in this covering a finite 
subcovering, and we find N such that 

'd ~ EX, ~=k' expHk' ~o (HE 5L (II»; 

then IHI ,;;N. 

Let m be a positive integer such that mlog2 > N. Let 
~ be in n such that 

I ~ 12 ~ (2n + 2) I ~o 12
, ~ = k' expHk~o (H E 5 L(II »; 

then there exists t E ]0,1] such that k' exptHk ~ is in X 
so that 1 HI < (1/0N and 

or 

I ~ 12m ~ (21 ~o 12)m exp[2mXo(H)] 

'" (21 ~o 12)m [exp(l/ t)2mXo(tH)] 

~ (21 ~o 12)m exp[ (1/ t)mlog2] 

1~12m~cexp[IHI] and ~=k'expHk'~o' 

LetX' be the set {~E Q 3 1 ~12,;; (2n + 1) 1 ~ol ,;X' is 
compact so that there exists a finite covering of X' by 
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compact balls B j and, on each B j n n, a continuous 
section Sj from Bin Q to G, So there exists a compact 
set X. in G such that 

f\ • ~o =X', 

SO we can extend the above relation to the entire orbit 
n. That is also true if n is compact, Now if 8 is a 
finite-dimensional representation of G, there exists 
c', p such that 

118(k' expHk) II ,,; C' II 8(expH) II ,,; c' exp[P1 HI], 

and this proves the lemmao 

Proof of the theorem 

Following Poulsen, 4 there exists u in U (g + t) and a 
positive c such that for all f in E~: 

Hf(e)II E,,; c !\dUL(u)fllEL, 

Then 

l! XE G, Ilf(x)II E = II UL (x-1)f(e)l\,,; cl\dUL(Adx(u»fIIEL, 

Now, Ilf(x)\\E is constant on left H cosets, so we can 
apply Lemma 2 and obtain 

Ilf(x)lIE"; c217T(X)1 2m lldUL(V)j1IEL 'f/ xEG,'f/fEE~, 

Let A t be the Laplacian of t, we have 

Ilf (x)II E = 17T(X) 1-2m ll (dUL (AT) f)(x)II E 

,,; c21IdUL(vA!')fIIEL, 

Let us consider now the two functional spaces A ,B: 

A (resp. B) is the space of C~ E-valued functions on 
G such that 

f(xh) = L(h~l)f(x) 'f/ XE G, hE H, 

and (1 + 17T(X) 12 )m II (u 0 f) (x) II belong to £l(G/ H ;llH) 
(resp. L~(G/H, llH» for every u in(j . We put on A 
(resp. B) a topology defined by the seminorms: 

IlfliA .p.u = J G/ H (1 + 17T(X) 12)Pllu' f(x)lldllH(X) , 

pcc:lN,ucc:U 

(resp. IIfllB .p.u = sup (1 + 17T(X) 12)i'llu' f(x)11 ). 
xcc: G/ H 

First we prove that the topological equalities A = B = E~ 
hold. Indeed, if f belongs to E~, we have 

IIjIIB.p.u"; C21IdUL(vA7(1 - At)P)fIIEL ' 

and if f be longs to B, we have 

'f/ucc:(j, IldUL(U)fIIEL =[f GjH Ilu'f(x)112dllH(X)]l/2 

,,; II fllB,zw [f G/)1 + 17T(X) 12)-21 dllH (X)}1/2, 

which is finite with our hypothesis. The same proof 
holds for the equality A = B. 

In order to prove the nuclearity of E~, we use the 
criterion of Ref. 8, Chap. 1, Sec. 3.3, Theorem 2. 

If all simply absolutely convergent serie L~ Fk in 
(E~)' is absolutely convergent, then E; is nuttear. But 
if LFk is simply absolutely convergent, there exists 
M,u,p such that 

t I Fk(j) I,,; Mllfll c •p•u 'f/ f E E~ 
k=l 

(Ref. 8, Chap. 1, Sec. 3.3, Lemma 1). 

1884 J. Math. Phys., Vol. 19, No.9, September 1978 

Choosing a Borel section S from G/H to G, and extending 
Fk to £l(G/H ,E, (1 + 17T(X)1 2)PdllH(X», we can use 
Ref. 9, Chap. 6, Sec. 2, no. 6, to define the fUnctions 
Gil in L~(G/H, (1 + I 7T(X) I 2)i'dllH(X) ) such that 

Fk(rp) = J G/H(Gk(X) , rp(x» (1 + 17T(X) 12)i'dllH(X). 

For all rp in £l(G/H,E, (1 + 17T(X)12)P dllH(i». Now, let 
(ei ) be an orthonormal basis of E such that if Ahis the 
Laplacian of ~ (the Lie algebra of H): 

(1-dL(Ah)}<l(ej)=Ajej and 2:>;1 <00. 

Such a basis exists since E~ is nuclear. Let us put 

Gk;(;r) = (G
k 
(x), e j ) • 

Since for all rp in £l(GIH,E) (el'rp)e j is in £l(G/H,E), 
we have 

~ 

6 I J Gk#)</J(x) (1 + 17T(X)jZ)PdllH(X) I 
k=l G / H 

";MJ I </J(x)j (1 + I 7T(X) 12)PdllH(X). 
G/H 

Now, we fix i, for all integer K, we consider the sets 
X in GIH where the functions ReGki(x), ImGkj(x) have 
constant signs for all k ~ K; afterwards we take any 
positive function 'i! in £l(G/H, ([, (1 + 17T(X) 12)PdllH(i), 
we write </J= L;x</Jx with 

i}!x(x)=i}!(x) if xcc:X, 0 elsewhere 

Then 
K [; J I Gkj (x) I </J(x)(1 + 17T (x) 12 )p dllH(X) 

k=1 

=6Z IJ Gki i}!X(1 + \rrI2)PdllHI 
X 11=1 GjH 

~ M J </J(1 + 17T 12)PdllH (x). 
G/H 

SO we extend this enaquility for all zJ; in £l, and we con­
clude that 

or 

~ 

E~s sup 6 I GkJx) I ,,;4M 'fI i. 
xE G/H k=1 

~ 

Ess sup 61I.0Aj1Gki(x)ekll <00. 
x~·G/HIl=l i 

On the other hand, thanks to Lemma 1, we have 

\ldL(1 - Al)q(u' j)(s(X))II E,,; Ilv' UL (x)u' fIlEL' 

where 1) belongs to J: so with the same argument as 
above, we can find W in J such that 

sup(1 + 17T(X) /2)P+/lldL (1 - Al)o[(u c !l(s(;) ) JIIE 
x 

,,;lIw'JlIEL 'fIj~E~. 

Now adapting the proof of Ref. 8, Chap. 1, Sec. 3, we 
conclude that 

/ Fk (j) / ~ s';lp(1 + /7T(X) /2)P+/lldL(1 - Al)q[(u 0 !l(x)] liE 
x 

,,; II W' J\IEL Ic; H (1 + /7T(X) /2)-/116,\,'GkJ") ei lldllH • 

• 
So let us consider the completion of E~ for the norm 
Ilw'jlleL; in its dual we have 
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~ 

~ IIFkll ~ J (1 + 17T(x) 12)-1 ~II );'\j1Cki (x)ejlldvH < 00. 
1<=1 G/H k j 

Our theorem is now proved. 

III. PLANCHEREL MEASURE AND HYPOTHESIS 2 

Let us consider now the assumptions of the theorem. 
From Lemma 1, we see the following: 

Proposition 1: The assumption (3) is a necessary 
condition. 

Proof: Since E~ is a Frechet space, the application 
Ci of Lemma 1 is a strict morphism, so E~ is a nuclear 
space when E~ is nuclear. 

Now we study the validity of assumption (2), and we 
want to prove that (2) is almost everywhere true for 
the Plancherel measure on (CTr, the dual of CT. 

The class of the Plancherel measure /1 [on (CTn is 
the class of measure associated with the left regular 
representation R of CT in £2 (CT) (see Ref. 10, for 
instance). We suppose /1(CTrJinite. We denote by y 
the set of orbits in rnn (=t* = T) with its Borel structure. 
With our hypothesis on CT, Y is isomorphic to a Borel 
subset of rnn , so Ij is standard. 11 Our notations are 
those of Ref. 10. 

Lemma 3: There exists a Borel map from (CTr into 
Rep(T) such that 

>It(UL)~:t;;oJ ~dvnW 
n 

if UL is induced from the orbit f1, vn being the above 
measure Vw 

Proof: Let us consider the restriction map r from 
Rep(C T) into Rep(T). r is continuous for the topologies 
of these spaces. IO Following Ref. 10, Prop. 4.6.2, 
there exists a Borel map s from (CTr into Rep(CT) 
such that S(UL) is in the class of UL . Let us consider 
now the map cp from Rep(CT) into Rep(CT) defined by 

cp(7T) = 7T;9 Id, 

Id being the identity map of an infinite-dimensional 
Hilbert space. cp is a continuous map; then the lemma 
holds for the composition map: 

if! = s 0 cp or 

Lemma 4: We have a decomposition 

K 'RI ~JEil eda(e) 
o T Rep(T) , 

where u is the measure into which Jl is mapped by >It . 

Proof: >It being a Borel map, we can define a and use 
Ref. 10, Chap. 6, Sec. 3, no. 1, Theorem 1. So we 
have a family of measure As (e E: RepT) such that 

/1= JEll Aedu(e). 

Now if (f8 eie du(e»i is a basis of the representation 
space of f 8 Bdu(e), for all t in T and i,j 

I R •
Plt

) (e( t» eie, eJe)du 

= f (>It(UL)(t)ei>l<WLp ejWWL) )dJl(UL) 
(GT)" 

holds. 

But the second term defines a representation of T 
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which is equivalent to 

J (G7)" K oULI Td /1(UL) ~ K oR IT' 

Proposition 2: Let d~ be the Lebesgue measure on 
rnn , X be a subset of IRn which is a union of orbits and 
X' be the subset of (CTr defined by 

X' ={UL such that UL is induced from f1 and ncx}. 

Then X I is a null set for /1 if and only if X is a null set 
for d~. 

Proof: We can decompose K oRI T by a Fourier trans­
form on T (see Ref. 12) in 

KoRIT~KOIlRn~d~. 
But if 

d~ = J~ vndA(n) 

is the decomposition of d~ with respect to the mea­
surable equivalence relation "~I and ~2 belong to the 
same orbit," 9 we have 

KoR I T =KoIy I n ~dvnWdA(n). 

But the measure vn is A-almost everywhere C in­
variant, so by unicity we can suppose that vn is the 
measure of Lemma 3. Then comparing this decomposi­
tion with the result of Lemma 4, we obtain two decom­
positions of the Lebesgue measure with respect to the 
above equivalence relation. Rep(T) and y being stand­
ard Borel set, there exist two null sets NI and N2 and 
a Borel isomorphism between y - NI and Rep(T) - N2 
intertwining the classes of measure of A and a (Ref. 9, 
Chap. 6, Sec. 3, Theorem 4). The proposition follows 
from this isomorphism. 

Corollary: Condition (2) of Theorem 1 is f.L-almost 
everywhere true. 

Of course, this assumption is almost everywhere 
true for the Lebesgue measure in rnn. 

Remark: Condition (1) is used in the proof of the 
theorem only via Lemma 2. Thus we can replace this 
condition by the little more general one: 

(1 ') There exists a nonnull invariant subspace V in 
rnn such that pn is closed, where P is the orthogonal 
proj ection on V. 

IV. APPLICATIONS 
Our theorem is useful if we characterize some 

classes of or~its by the values of continuous invariant 
functions on T since these orbits actually are closed. 
Here are two examples, generalizing the case of the 
Poincare group where that happens: 

(1) C· T = SOo{P, q). rn p
+q

: We suppose the action of 
SOo(p, q) [the connected component of the identity in 
SO{P, q)] in rnp,q is the canonical one. Then if ~ = (~1' 
••• , ~P' ~P+I' .•. ~p+,> belongs to rnp+q, the quantity m 2 

= 2: tl ~T - L q ~2 + is invariant. If m 2 is non null , the or­
bit of ~ is ~h~;a~terized by its value (and a sign if p or 
q is 1), the stabilizer of ~ is isomorphic to SOo(p-1,q) 
or SOo(p,q-1), following the sign of /11 2

; so we see 
immediately that the three conditions of our theorem 
hold and E~ is a nuclear space in all this case. If /11 2 

is null, besides the trivial orbit {a}, for which E!: of 
course, in nuclear, we have an orbit (or two orbits if 
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p or q is 1) which is a cone so that, thanks to the proof 
of Ref. 2, it is easy to see that E~ is never nuclear. 

(2) Gl' =SL(n, C)· JRn2: This group was studied by 
Rideau and Angelopoulos .13,1 We realize JR'(! as the 
group of nXn Hermitian matrices A, and we know that 
the orbits are characterized by the determinant of A 
and the numbers p, q, r of positive negative and null 
eigenvalues of A. 1 

Let us consider the set X of the A with detA * O. X is 
invariant dense and open in JRn2

• The orbits in it are 
closed since eigenvalues are continuous functions of A. 
Condition (2) holds since X is the finite union of the open 
subsetX P'q of the A inX with fixed number of positive 
eigenvalues. 

Finally, the stabilizers are all semisimple: they 
are isomorphic to SU(P, q). Ou r result can be applied, 
and all the spaces of C" vectors are nuclear for this 
set of representations X'. Moreover, thanks to Propo­
sition 2, the complementary of X' is a null set for the 
Plancherel measure. 
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Slow motion approximation in predictive relativistic 
mechanics. I. Approximated dynamics up to order c -4 a) 
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We obtain the most general two-body system relativistic invariant having a Newtonian limit Up to c-4 

order. In particular. it includes the scalar, gravitational, and other well-known dynamics up to c -2 order. 
It also includes to c -4 order the dynamics obtained recently by Lapiedra and Mas in predictive relativistic 
time symmetric electrodynamics. 

1. INTRODUCTION 

The predictive relativistic mechanics (PRM) of the 
isolated systems of N structureless point particles, in 
the manifestly predictive formalism, 1 is based on two 
fundamental principles: 

(a) Principle of predictivity: the evolution of such a 
system is ruled as an ordinary second order system of 
differential equations over ffi3N, 

(b) Principle of relativity: the set of trajectories of 
such a differential system is invariant as regards the 
Poincare group. 

These prinCiples have been considered incompatible 
for some timeo However, in 1961 Havas and Plebanski2 

demonstrated the compatibility of PrinCiples (a) and (b). 
Later, Currie3 and Hill4 found the necessary conditions 
that the accelerations of the particles must satisfy in 
order for the system to be Poincare invariant. Bel5 

proved that such conditions are also sufficient. These 
conditions that constitute a first order system of non­
linear partial differential equations which must be 
satisfied by the accelerations, are called in the litera­
ture "world line conditions 0" We shall call them 
Currie-Hill equations. 

In this paper we study the isolated systems of two 
particles in an approximate framework (up to now no 
physically meaningful exact solution of the Currie-Hill 
equations has been obtained). We adopt the most 
commonly employed approximation in relativistic 
dynamiCS, Leo, the slow-motion approximation, which 
consists of an expansion of the accelerations in c- l

, 

where c is the velocity of light in vacuum, This pertur­
bation technique permits the recurrent calculation of the 
accelerations by solving, at each order, a very simple 
first order system of linear partial differential 
equations. 

We obtain the most general two-body system that 
satisfies the Currie-Hill equations, which is invariant 
by space inversion and possesses a Newtonian limit up 
to order c-4, In particular, it includes to order c-2 , the 
following interactions deduced from the classical theory 
of fields: scalar (in its two versions), vectorial (in 
particular, electromagnetic), and gravitational inter­
actions. It also includes to order c-4 the dynamics 

alResearch supported by the Instituto de Estudios Nucleares, 
Madrid, Spain. 

obtained by Lapiedra and Mas6 for the two-body problem 
in predictive relativistic time symmetric 
electrodynamics. 

2. MANIFESTLY PREDICTIVE FORMALISM 

An isolated system of N structure less point particles 
is described by an ordinary second order system of 
differential equations 7 over ffi3N 

dx i dv i 
_4 =vi _G = Ili(t xl v k ) 
dt G' dt G' b' c' 

(1) 

where the functions Il! must satisfy the following first­
order system of nonlinear partial differential equations 
which state the invariance of the set of trajectories by 
the Poincare group3-5: 

all: _ ° at - , 

a Il~ 
Eb -a . =0, 

x J 
b 

C-2Vk(Xl _ xl) a Il~ + [C-2V'Vi + c-2(xl _Xi)llk _ E eiik] a Il~ 
b b • ax~ b b b. b b GV: 

=c-2(2v~ll! + v!Il~). 

(2) 

(3) 

(4) 

(5) 

Equations (2) and (3) express that the functions Il!, 
which we shall call accelerations, are invariant by the 
space-time translation group. Equation (4) states that, 
as regards the space rotation group, the functions Il! 
are vectorial functions of vectorial variables, and Eq. 
(5) is associated with pure Lorentz transformations. 
We shall call them Currie-Hill equations. 

Moreover, we assume that the dynamic system (1) is 
invariant under space inversion; this implies 

(6) 

but we do not assume that the system is invariant under 
time inversion, 

3. APPROXIMATED DYNAMICS 

In order to solve Eqs, (2)-(6) in the case of two 
particles (N = 2) we adopt the slow-motion approxima­
tion. We shall assume that the accelerations M! can 
be expanded into power series of c- l , 
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lli='£C-n(ii 
G. "=0 -
=ili+C-'~i+C-2~i+C-3Mi+C-4~i +O(c-5), (7) 

a A .4. 

where the functions fl! are independent of c and verify 
the conditions 

O. -1 aV(r) 
Il'=-m --, 
• • ax~ 

(8a) 

1 . 
M~=O, (8b) 

where m. > 0 is the mass of the particle a, x!.' '0; x! -x!" 
r= + (x!.X •• 'i)I/2 and V(r) is independent of c. 

Assumption (8) if' based on the following considera­
tions: First, we want the dynamic system to constitute 
a Newtonian system of two particles in the limit c - co; 
this justifies (8a), Second, it is well known that the 
dynamic systems corresponding to N interacting par­
ticles (scalar, electromagnetic, or gravitational) de­
duced from the classical theory of fields to order c-2 do 
not contain the c-1 term; this justifies (8bL We shall say 
that the dynamic systems that verify the property (8) 
have a Newtonian limiL 

Trivially, (2) and (3) express that M! = M! (x~ •• , v:), 
that is to say, the functions M! are independent of t and 
dependent of the relative position. Equation (5) can be 
written, for N = 2, as 

G i -2 [ (k a Il! I< all!) b R i 
- }Il.=c x .. '} Va' aX'" + 11., (lV.'k -VJ bllo 

+ 2vaJIl! + !J!1l0J} (9) 

where G
j 

and Rb are the linear operators 

il (! 
G =E -, R =V"--, 

J barb b bav"b 
(10) 

By substituting the expansion (7) in (4), (6), and (9), 
and equating each term of the series, we obtain at each 
order n that the functions ~!(x~." v:) must satisfy: 

(l1a) 

(l1b) 

(n:> 0, (Hc) 

where D. is the linear operator 

a 0 a 
D =v"-- + 11"--' 

• 0 ax.' • av." (12) 

The compatibility of conditions (8) with Eqs, (11) at 
orders n = 0,1 is easy to prove, It is also evident that 
Eqso (11) constitute a recurrent method for the calcula­
tion of the different orders of the expansion (7), since 
the terms in the second members of (l1c) are of lower 
order than those in the first member. 

To each order, Eqs, (lla) and (Hc) can be considered 
as a system of linear partial differential equations with 
the subsidiary condition (llb), whose general solution 
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we shall write as 

{li = {li + Il i (13) 
• p' *a , 

where ~! is the general solution of the homogenoues 
system GJil.i=O satisfying (lla), (llb), and J1i is a * p. 
particular solution of the complete system (11). 

n. 
It is easy to see that Ii! must be of the form 

nl_j"*xi +~ i 
~. - • Ge' .5, va..' 

(V!a'~V! -v!,~ s=~x!&,vaa'i' v
2

:::::v!c,vaa'i)' 

(14) 

where J:, g: (r, s, v 2
) are arbitrary functions of their 

a.rgumnents, In fact, GJ~! = 0 expresses that the func­
tions Ii! (x~ •• , v:.') are dependent of the relative velocity. 
Thus, in the generic case we can write 

Il i _j"*(x} ")xi +~(xJ 1<) i *Cl - Q aa" V ca' aa' [:;0. '''I'' V Cia" V g,' 

"n n 
where j:, ~, and h: are arbitrary functions of the 
relative position and velocity. 

On the other hand, (11a) trivially implies that the 
preceding functions are rotationally invariant, from 
which we deduce that they are arbitrary functions of 
three particular solutions, for example, r, s, and v2

• 

Finally, if we take into consideration (llb), it is obvious 
that h: must be identically null in order for the system 
to be invariant under space inversion. (14) is thus 
proven. 

The problem is then reduced to finding a particular 
solutions of (11) at each order. 

Defining 
n. n. 
F~ = m.ll~ 

we shall have up to order c-1 

. W . 
F'=-x' a - r2 aa" W=rV' 

by hypotheSis (but compatible with the Currie-Hill 
equations and invariant under space inversion), 

(15) 

(16) 

Before continuing on to the next orders, we sum­
marize for later usage the actions of some operators 
upon the variables (r, s, q, Ya' Y): 

jJ = mlm? , 
nil +m? 

(see Table 1). 

(17) 

The proof of Table I is straightforward. If suffices to 
take into consideration the definitions of the operators 
and variables respectively. Hereinafter, we shall use 
it without explicit reference. 

4. ORDER 2 
Taking into account (15) and (16), Eq, (llc) can be 

written at this order 
2 0 0 () 

- GjF! =xaa'jDa,F! + 2vaJF! + Fa/,'!' (19) 

It is easy to see that 
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TABLE I. 

r s q 

0 1xi !v!.,. ox'! r all !Ia (vi +vi ) 
2 a a' 

0 

8v1 

D 

Drj 

with 

0 

2 
-s 
r 

l(s-17 q) r a 

o 

o 

2 W 
b. '" """2Tf.q, 
p r 

~x!a, 

~(Y- ~) 
l( 2W) "4 Y-Ya+Ya'-m" 

o 

(20) 

(21) 

is a particular solution of (19), On the other hand, it is 
obvious that ~i '" m-1 Pi satisfies (lla) since J and b 

;. • p. ~. ;. 
are dependent on the variables (r,s,q,y.) WhICh are 
particular solutions of (lla). Analogously, it is obvious 
that ~i satisfies (llb), 

p. 

In short, taking into account (14), we conclude that 
the general solution of (11) at order two is 

2 2 [W 1 (W)' F!"'m.J1!= rY.+2r r2 Tf.q(2s-1)aq ) 

W(2V-W W) 2 ~ +- ---+- +a*(r s Y) Xi, 4r2 m" rna' a" aa 

+[ ~Tfaq + b:(r, s ,y)] v!." (22) 

where ~: and b: are arbitrary functions of their argu­
ments. 

5. ORDER 3 

Taking into account (16), Eq, (llc) can be written at 
this order 

3 . 

G,J1;=O, (23) 

Therefore, the general solution of (11) is, according to 
(14), 

3. 3. 3 ( ). 3 ( ) . 
F!"'m.J1!=a: r,s,Y x!.,+b: r,s,Y v~a" 

where ~: and b: are arbitrary functions ·of their 
arguments. 

6. ORDER 4 

(24) 

Taking into account (15) and (16), Eq, (lle) can be 
written at this order, 

G 
L J,; b 2. 2. 2 . 

- ,1'.! == x.""D .,.C' ~ - v,RbF;. + 2v.jF;. + Fajv!. (25) 
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Ya Ya' Y 

0 0 0 

2v~ 0 2v~a' 

2W 2W 4W 
- m a-?- (s + 17aq) - m"-?- (s -17aq) - f.J-?- s 

2W 4W 
0 - m".y2 (s -17aq) - m"r s 

First, we can prove that 
4 

Fi '" ~ Xi + b Vi , 
pap a Ga' p a aa' 

with 

o 

o 

2 

ab* 
+ tEb(S +1)bq )Y b --:a:- + t[(y. - Yo)2 + 2y(y. + yo)] 

(26a) 

ab: 1 (W), 2 W ~ 2V -W 3W) X---"""2 q (2s-Tfq)---::21)qy+--+-, 
ay 2r r • 4r· m· m" 

2 2 

-Tf q[a* +!.(y _~)abt -~S Dbt ] 
• • 4 m" as m" r2 oy 

2 
1 aM 

--Tf q(2s -1) q)-, 
2r • • ar 

is a particular solution of (25), In fact, 

-Ci'i = (- Gj~')x!,,+ (- Gjb.Jv!;. 
;a p p 

On the other hand, we can write 
2. 2 . 2. 2 2 2 2 2 2 

F!"'a.x; .. +b.v!a', aa"'~.+a:, b."'f.+b:, 

.D F2i ~D .;i., 2 F2i F2 i 
==> Xu .' • -VJnbj<~ + v., "+ .,va 
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2] 2 2 - (R ,0 )1' 'J + Vi ,[ (D . b + a)x '. a a" aa a a a - aa J 

Therefore, we deduce from (27) and (28) that the 
following equations must be satisfied: 

(28) 

G.'h. = - (D'~ - ~,) \, '. + (R J - 2~ )v . + (R ,;i )1, , , 
J P C1 CI 1"11 a r (l J aa) a a g 0.1 CI a G j 

4 2 2 2 2 2 2 (2 9) 
G b = - D ./) + 0 lx ' + (R b - 2b )V J + (R ,b + b k '. 0 J p a CI (l a aD j a a rI II a 4 a II J 

Moreover, we have 

a'll. oba oba 
GJ'h.=11 +x .. +2-P

-t' .+2-P-.l', 
p a uCf aaJ oya aJ iJya aJ 

., 
and an analogous expression for G.b ; therefore, 

JpO 
according to (29), 

a 4 2 
2-a ,aa=R ,a , y. p •• 

a ., 2 2 

2 ~ ba = R.b + b . ,.y' p • a • 

(30a) 

(30b) 

After a tedious but straightforward calculation one easily 
verifies that Eqs. (30) are identically satisfied. 

On the other hand, by a reasoning similar to that 
employed at order two, we conclude that ti = mol Fi "C • p' satisfies (lla) and (llb). 

Then, taking into account (14), the general solution 
of (11) at order four can be written 

4 . 4. [4 4 * ( )]. [1 4 ( ] . 
l";,"=m.M!= ~a+a. r,s,Y x!.,+ ~.+b: r,s,Y v~a" 

4 4 (31) 
where o. and b are the functions (26b) and (26c), 

p p. 4 4 
respectively, and a: and b: are arbitrary functions of 
their arguments. 

7. SUMMARY AND CONCLUSIONS 

In brief: The most general dynamic system that can 
be expanded into power series of c-l , satisfying the 
Currie-Hill equations, invariant under space inversion 
and possessing a Newtonian limit, is given up to order 
c-4 by 

Fi '" m M i = _ W Xi ,+ 2 {[ W v 2 + ....!. (W)' 11 q (2s - 11 q) 
a •• y2 a. c 2 y2. 2Y y2 a • 

W (2 V - W W\ 2 * ] i 
+ 4y2 ----;;;0- + m" ) + a. X. a' 

[ 
W 2 *J .} 1 {3 . 3 * . } + -rJ Cf + b v' + - a*x' + b v' 
y2 '10 a aa' c3 4 CUI' CI •• ' 
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where ~*, ~* (Y,S,v2) are arbitrary functions of their 
« c 4 '1 

arguments and aa' 0. are given by (26b) and (26c). 
p p 

In particular, included in (32) up to order c-2
, are the 

following interactions whose approximate dynamics are 
deduced from the classical theory of fields: scalar (in 
its two versions), vectorial (in particular, electro­
magnetic), and gravitational interactions" 

The fact that a version of the scalar interaction 
(theory y = 1), 8 in the same manner as the vectorial and 
gravitational interactions, satisfies the Curie-Hill 
equations to order c-2, is well known in the litera-
ture o 9-13 We incorporate the new relevant fact that 
another scalar interaction version (theory y = 0) also 
satisfies the Currie-Hill equations to order c-2

" 

We remark that also included in our dynamics (32) are 
other approximated dynamics obtained from the follow­
ing approximated Lagrangians to order c-2

: (i) the 
Bazanski Lagrangianl4 corresponding to the interaction 
of two masses with charge in general relativity, (ii) the 
Estabrook Lagrangianl5 corresponding to the interaction 
of two point masses in the Brans-Dicke theory, (iii) the 
BOpp16 and Baggel7 Lagrangians which are the generali­
zations of scalar and vectorial interactions, respec­
tively, with V(Y) arbitrary, (iv) the Mas9 and KennedylO 
Lagrangians, (v) the Woodcock-Havas Lagrangian l1 

obtained from Lorentz -invariant variational principles, 
and (vi) the Stachel-Havas Lagrangianl2 obtained through 
a canonical formalism. 

Finally, Lapiedra and Mas have recently determined6 

the accelerations for the two-body problem in pre­
dictive relativistic electrodynamics up to order c-5

• 

They assume the Currie-Hill equations, certain 
symmetries (including invariance under time inversion), 
and the relativistic extension of Coulomb's law, so 
obtaining a unique dynamic that up to order c-4 has the 
form (32) with 

V- g -=;:' g=e l e 2 , 

a*=-s2 -- _____ +--- 1.1 2+- -+-4 g (15s
2 

3v
2 

9g ) g2 [ g ( 2 1 )] 
a - y5 8y2 4 mC'y 4m·'y4 y m· m"' 

ISuch a denomination of the formalism has been recently 
adopted by L. Bel. 

2p. Havas and J. F. Plebanski, Bull. Am. Phys. Soc. 5, 
433 (1961). 

3D. G. Currie, Phys. Rev. 142, 817 (1966). 
4R. N. Hill, J. Math. Phys. 8, 201 (1967). 
5L. Bel, ADo. Inst. H. Poincar~ 12, 307 (1970). 
GR. Lapiedra and L. Mas, Phys. Rev. D 13, 2805 (1976). 
7i,j, k, ••• ,1,2,3; a, b, c, a', .•• = 1, ••• ,N where N is the 
number of particles, a' is always different from a; all indices 
follow the summation convention; 1);ik is the Levi-Civita 
pseudotensor normalized with 1)123 = 1; c is the velocity of 
light in vacuum; Ea = E a = + 1. 
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Stochastic quantization of wave fields and its application to 
dissipatively interacting fields 

Kunio Yasue 

Department of Physics. Nagoya University. Nagoya 464. Japan 
(Received 12 September 1977) 

The stochastic quantization procedure, proposed by Nelson, is further developed to include the problem of 
field quantization. To maintain the mathematical rigor in treating infinitely many degrees of freedom, 
basic notions of the nonstandard analysis are adopted. As an application of the present method, a 
quantum mechanical description of dissipatively interacting fields, such as the laser electric field in the 
lossy cavity, is investigated. 

I. INTRODUCTION 

Several years ago, Nelson! proposed a new frame­
work of nonrelativistic quantum mechanics based on 
stochastic calculus which is now frequently called the 
stochastic quantization procedure. Although he succeed­
ed in deriving the Schrodinger equation with mathemat­
ical rigor, many other parts of the subject matter of 
quantum theory such as spin, relativity, and field 
quantization were left uninvestigated. 

Later on, those with spin and relativity were over­
come satisfactorily: Dankelz has incorporated spin 
freedom by applying the stochastic quantization pro­
cedure to dynamical systems on finite dimensional C~ 
manifolds, and Caubet, 3 Pena-Auerbach,4 and Lehr and 
Park5 have generalized it to include relativistic quantum 
mechanics. There have been, on the other hand, no 
mathematically consistent generalizations of the 
stochastic quantization procedure to include the quantum 
field theory. This is because the probability theory 
based on the standard analysis can not provide profit­
able techniques in investigating the stochastic calculus 
on the infinite dimensional space of generalized 
functions. 

However, in regarding the considerable result of the 
formal stochastic quantization of a real free field given 
by Guerra and Ruggiero, 6,7 the existence of a rigorous 
stochastic formulation of the quantum field theory has 
been expected. 

In the present paper, we investigate such a stochastic 
formulation of the quantum field theory. We make use of 
basic notions of the nonstandard analYSis for the purpose 
of treating infinitely many degrees of freedom 
consistently. 

The most significant point of the present stochastic 
formulation is that it relies on neither Hamiltonian nor 
Lagrangian but on the field equation in the generalized 
sense. So it seems applicable to the wider class of 
wave fields, that is, not only to nondissipative fields 
but also to dissipative ones. To clarify the situation, we 
shall demonstrate the stochastic quantization of dis­
sipatively interacting fields. 

In Sec. II, we present the stochastic calculus on the 
infinite dimensional space of generalized functions. 
Section III is devoted to performing the stochastic quan­
tization of nondissipative fields. Section IV treats the 
stochastic quantization of dissipative fields interacting 

with chaotic thermal environments. As an application of 
the present method, we investigate a quantum mech­
anical description of the laser electric field dissipa­
tively interacting with the cavity in Sec. V. 

II. STOCHASTIC CALCULUS ON KAWABATA 
SPACE Cjen}(Rd) 

This section is devoted to sketching the structure of 
Kawabata space and to develop stochastic calculus on it. 

We fix a free ultrafilter F on N (N denotes the totality 
of natural numbers). Let * E = nnEN Rnl F be the ultra­
Euclidean space, that is, a quotient space of nn.:':NRn 

with respect to the following equivalence relation 

(1) 

where a = {a(nl} = = {(a Cnl ... a Cnl )} ~ and b n·._ N 1, , tl nC. N 

= {bCnl}n::=:N= {(b(j\. ", bC~l)}nEN belong to D"ENRn. The 
equivalence class which contains a = {a(nl}n::=: N should be 
denoted by [a(nlJn::=:* E. 

It can be seen easily that the ultra-Euclidean space 
* E possesses the structure of linear space over the 
ultrareal field *R =RN IF, and the structure of Eucli­
dean space with respect to the inner product 

=[ 6 a(;lb(;lJnE *R. 
p:s.n 

(2) 

According to Kawabata and Kurata8 we can generalize 
the concept of real-valued functions on the d-dimen­
sional Euclidean space Rd as follows. 

Let 5 (Rd) be the Schwartz space over Rd and {en}nEN 
c 5 (Rd) be a complete normalized orthogonal system of 
L 2 (Rd ) [Lz(Rd

) denotes the Hilbert space of real square 
integrable functions on RdJ. Then we can associate a 
unique *R-valued function ¢ on Rd with each element 
[a<n)JnE*E; 

= [ L at;) epH In. 
p~" 

Totality of such *R-valued functions is denoted by 
* C{e

n
} (Rd) and called the Kawabata space. It is home­

omorphiC to * E if we define the inner product 

(3) 
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(1),1/1) = ([ L a(;)epln, [ L b(~) eoln) 
p:S.n Q ~n 

= [L a(;)b(~)(ep, eo> In 
Ptq~n 

= [I; a(;)b(~) In 
p"'n 

for any 1>, 1/IE * (len) (Rd). 

Note that any function 

1> = [ L a(;) epln E * (len) (Rd) 
poS.n 

is locally differentiable and integrable in the sense 
that 

and 

(4) 

(5) 

(6) 

hold. Local product of such *R-valued functions 1> and 
1/1 can be defined to be 

1> (x) 1/1 (x) = [ L a(;)b(~)ep(x)eq(x)lnE *R. (7) 
q,p~n 

Now we shall proceed to develop the stochastic cal­
culus on * (Ie) (Rd

). 
n 

Let X(n)(t) = (X(j)(t), ••• , X(~)(t)) be an n-dimensional 
diffusion process described by the stochastic differen­
tial equation 

(8) 

where B(n) (t) denotes an n-dimensional Wiener process 
with diffusion constant (3 and a(n) (. , t) a given vector field 
on Rn. Namely the probability distribution of X(n) (t) 

Prob{X(n) (t)EO d"x(n)}=p(x(n), t)dnx(n) , (9) 

satisfies the following Fokker- Planck equation. 

~ _ " a (n») " 0
2 

at P-- L-::;-:-:r,;)a n) app +(3L ~O n) P. 
p"'n X p p"'n X p 

(10) 

Starting with a family of such diffusion processes 
{X (n) (t)}n~h we can construct a diffusion process ,y(t) on 
* (len) (Rd) 

,y(t) = [ L Xl;) (t)epln EO * (len) (Rd). (11) 
p~n 

The nonstandard probability distribution of ,y(t) is given 
by 

= [p(x(n), t)dnx(n)ln 

= [p(x(n), t)ln[d"x(n)ln 

=p(1/I, t)01/l, 

where P(1/I, t) = [p(x(n) , t) In' 1/1 = [L;p"'n x(~)epln' and 01/1 
= [d"x( n)ln' 

(12) 

The nonstandard probability density p(1/I, t) defined 
above satisfies the following second-order functional 
differential equation: 

(13) 

Equation (13) can be rewritten in a unified form 

(14) 

where At denotes a transformation on * (len) (Rd); 

A t ;1/I=[ L x(;) epln I---A t 1/l 
p~n 

= [ L a(;) (x( n), t)epln• (15) 
posn 

The functional derivative of a functional on * (len) (Rd) of 
the type 

is defined, following Kawabata and Kurata, 8 to be 

Equivalence of Eq. (13) and Eq. (14) can be seen di­
rectly as follows: 

(17) 

= fadX 01/l~X) [p~ a(~) (x(n), t)p(x(n), t)ep(x)ln 

= ftfx~~"'n a:<:' {a(;) (x(n) ,t)p(x(n), t)}ep(x)eo(x~n 

=rI; a o<n) {a(;) (x(n) ,t)p(x(n), t)}(ep, eo)] n = [I; ~{a(;)(x(n), t)p(x(n) t)l (18) l? 0 "'n X 0 P "'n ax p , J n, 
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= [L axl n~: (n) p(x
ln

), t)(ep , eo>] n = [ L, ~ p(x(n>, t)] n' 
p. q~n p X q p:!O.n uX p 

(19) 

~he expectation value of a random variable of the type F(w(t), t) =: [F(Xln ) (t), t) In is given by the following functional 
llltegral form: 

(20) 

where the functional integral of a functional of the type (16) is defined, following Kawabata and Kurata,8 to be 

i.{ d F(1/!)61/! =: [j F(x'n»d"x'n)lnE *R. (21) 
(R ) 

(en' 

For the later use, it is convenient to introduce the mean derivatives of a random variable of the above-mentioned 
type F(w(t), t); 

DF(w(t), t) = lim-hI E{F(w(t + h), t + h) - F(w(t), t) I w(t)}=: lirrJ.[E{F(xln) (t + h, t + h) - F(x(n) (t), t) Ix'n ) (t)}]n 
~o ~oh 

where E{. I.} denotes the conditional expectation and A t a transformation on * C (Rd ) such that 
(on) 

At ;1/! = [ Lx(;lep].1- AA = [6a~n) (x(n), t)ep}n> (24) 
p~n p ~n 

with 
~(.) (.) 2f3 il 1 a p = a P - ~il n) ogp. 

xp 
(25) 

~ 

Namely we have the following relation between At and At: 
~ 6 

At1/!(x) =At1/!(x) - 2f3 151/!(x) logP. (26) 

These functional differential operators D and D * are called as mean forward and mean backward derivatives 
generated by wet), respectively. 

III. STOCHASTIC QUANTIZATION OF 
NONDISSIPATIVE FIELDS 

We present the basic ideas of the stochastic quantiza­
tion of nondissipative fields. 

Let us consider a real classical field 1/!(x, t) on R3 
with the following field equation. (The light velocity c is 
assumed to be unity in this section. ) 

(27) 

where X is a parameter with dimension L _1 and V de­
notes the three-dimensional gradient. Equation (27) is 
equivalent to the following one for 1/!(', t)E* CIon} (R3): 

.. ( ) _ 6 1 I'!{( )2 2 2} 3 
1/! X, t - - 151/!(x, t) 2J I V1/! + x1/! d y. (28) 

According to the first basic assumption of the sto­
chastic quantization procedure, the quantized field w(t) 
is assumed to be a diffusion process on * ct. ) (R3) with 

n 
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diffusion constant (3 = 1f/2, where If stands for Planck's 
constant divided by 27T. The probability density p(1/!, t) 
of the quantized field can be determined through Eq. (14) 
with a given initial condition, say p(1/!, 0) =Po(1/!)· 

To determine the unknown transformation A t on 
* Cle) (R3), we need the following second basic assump­
tion;' the field equation (28) is valid with the 
substitution 

{ ·~(X' t) I- ~ (DD* + D*D)w(t) 

1/!(x, t) 1- wet). 
Namely we have 

~(DD* +D*D)'fJ(t) 

=- 15:(t)~fi(vw(t)2 +x2\).,(t)2}d3x, 

which can be written explicitly as 

(29) 

(30) 
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Finally, we make the following additional assumption 
onA t and At: 

~(At+A)</!(X)='f O</!~X)S(</!,t), (32) 

where S(·, t) is a functional on * [[en} (R3) of the type 
S(</!, t) = [S(x(n), O]n. 

It seems worthwhile to notice that Eqs. (14), (26), 
(31), and (32), with given initial conditions, are suffi­
cient to characterize the quantized field iJ,(t) completely. 

Let us introduce the state functional 

n(</!, t) =-Jp(</!, t) exp{iS(</!, t)} (33) 

on * [len} (R3). Then Eqs. (14) and (31), with Eqs. (26) 
and (32), yield the following Schrodinger equation for 
the state functional n(</!, t): 

in :t n(</!, t) = ~ ~3x {- n2 
O:;x)2 + [V</! (x) ]2 

+ X2J!(X)2 } n(</!, f). (34) 

Equation (34) with the given initial condition completely 
determines the behavior of the quantized field 'f,(t). 

Thus the stochastic quantization is shown to provide 
the same representation as the canonical one. 

IV. QUANTIZATION OF DISSIPATIVE FIELDS 

We study here a quantum mechanical description of 
dissipative fields interacting with chaotic thermal 
environments. (Quantum mechanical description of a 
particle dissipatively interacting with a thermal en­
vironment was investigated by the present author9 and 
Skagerstam. 10) 

Let us consider a classical acoustic wave field with 
field equation 

(35) 

where u denotes the sound velocity. Complicated in­
teractions between the field and the thermal environ­
ment are renormalized phenomenologically into two 
terms; the friction coefficient A ~ 0 and the random 
source field J(x, t). Note that the random source J(x, t) 
is assumed to be a Gaussian white noise with mean 0 
and covariance 

(36) 

Because of the absense of a physically meaningful 
Lagrangian or Hamiltonian of such a dissipative field, 
neither canonical nor path-integral quantization can be 
performed. The only available quantization procedure 
seems to be the present stochastic one which demands 
no Lagrangian or Hamiltonian but the field equation in 
the generalized sense. 

Quantization procedure is the same as the preceding 
nondissipative case: 

(Q-1) Quantizedjield \ft(t) is a diffusionprocess on 
*[[e} (R3) with i3=n/2. 

n 
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(31) 

(Q-2) Field equation (35) is valid with the following 
subs titution: 

1 
~.: (x, 1) 1- ~(DD* + D*D»J,(t), 

J!(x, t) 1- ~(D +D*)>lI(t), 

J!(x, t) 1- >lI(f), 

that is, 

~(DD* +D*D)>lI(t) 

= - O:(t) 1;2 jd3x{ v</!(xW - ~ (D + D*)iJ'(t) 

(37) 

+ o~(t)fd3x </!(x)J(x, t). (38) 

(Q-3) 

A 0 
~(At+AtH,(t)=n O>lI(t)S(>lI(t),t) (39) 

(Q-4) Probability amplitude n(</!, t) is defined by 

n(</!, t) =-JP(</!, t) exp{iS(</!, tl}. (40) 

Finally Eqs. (14) and (38), with Eqs. (26) and (39), 
give us the following Schrodinger type nonlinear 
equation. 

in :t n(</!, t) = ~ fd3
X { - n2 

o:;X)2 

2[ ( ]2} iAli n(</!, t) (.) + u V</! x) n(</!, t) +-2- log n(</!, t) • n 1);, t 

-fd3X </!(x)J(x, nn(</!, t)o (41) 

Equation (41) completely characterizes a quantum 
mechanical description of the dissipative acoustic wave 
field (35). Notice that the dissipative feature of the 
wave field appears in Eq. (41) through the nonlinear 
potential 

in n(</!, t) 
AS(</!, t) =2Alog n(</!, tr (42) 

That this is so can be seen as follows: 

Neglecting the random potential term in Eq. (41), the 
expectation value of the total energy operator 

H=~fd3x{-n2 O</!~~)2 +u2[ViJ;(X)]2} (43) 

with respect to the characteristic state n (., 0 is given 
by 

E(l) =f n(iJ;, t) [4fi3X {- n2 O«J~~)2 

+u2[ViJ;(X)]2}J n(iJ;, t)oiJ;= f n(iJ;, t)Hn(iJ;, t)o</!. (44) 

As the state functional n(·, t) is a characteristic solution 
of Eq. (41) without the random potential, we can im­
mediately calculate the rate of energy loss 

:t E(l) = f {a~;iJ;, t)Hn(iJ;, t) + n(iJ;, t)H an~~, t) } oiJ; 
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=-~!i2f{fo3x/64\~X)lOg ~i~:~~ rI Q (4\,t)/2}04\ 
< O. (45) 

Thus we have shown that the Schrodinger type non­
linear functional differential equation (41) provides a 
quantum mechanical description of the dissipative 
field. 

V. APPLICATION TO THE LASER ELECTRIC 
FIELD IN THE LOSSY CAVITY 

As a practical problem, there are two typical ex­
amples of dissipative fields; the viscous quantum fluid 
of the nucleonic matter and the laser electric field in 
the lossy cavity. 

In the former case, the relative density disturbance 
of the nucleonic matter is considered as a viscous 
fluid. It is described by the Navier-Stokes equation 

pv + p(v·v)v = - u2Vp + 1)V2
V, 

and the equation of continuity 

p + V·(pv) = 0, 

(46) 

(47) 

where 11 and 1) denote the sound velocity and the visco­
sity, respectively. As we are interested in the quantum 
fluctuation of the relative density disturbance, it is 
enough to consider the linearized equation 

(48) 

where lJ denotes the kinematic viscosity. Equation (48) 
may be utilized to analyze the nuclear dissipative 
phenomena such as the giant resonance and the heavy­
ion collision. Quantum mechanical analysis of such 
phenomena needs the quantization of the dissipative 
field (48) by the present method. 11 

In the latter case, Maxwell's equations in mks units 

D=EOE + P, 

B=floH, 

VXE=-B, VXH=J+D, 

and the phenomenological Ohmic loss relation 

J=aE 

give us the following dissipative field equation: 

(49) 

(50) 

-v2E+fl oaE+floEoE=-floP. (51) 

The laser electric field E is forced by the imposed 
polarization vector P and damped by the Ohmic energy 
loss in the cavity through Eq. (51). Equation (51) com­
pletely determines the laser electric field in the lossy 
cavity without detailed description of the mechanism of 
the cavity loss. The conventional treatment of such a 
lossy laser is to describe the atoms in a laser quantum 
mechanically and the electric field (51) classically. 12 

Therefore, quantum mechanical description of the 
laser electric field in the lossy cavity seems to be 
needed. (A constructive approach to quantum mech­
anics of the lossy laser from a fundamental point of 
view was given by Bepp and Lieb. 13 They made use of 
the Heisenberg representation, whereas our standpoint, 
explained here, may be understood as the Schrodinger 
representation. ) 
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In this section, we investigate quantum mechanics of 
the laser electric field described by the dissipative 
field equation (51) in much detail. 

For simplicity, let us assume the laser electric field 
be linearly polarized, that is, 

E(x, t) =eE(x, t) (52) 

for some unit vector e. Then Eq. (51) becomes 

.. 1 • 1" 
E(x, t) =c2V 2E(x, t) --E(x, t) --e.P(x, f), 

EO EO 
(53) 

which is evidently of the same form as Eq. (35). There­
fore, quantization of the laser electric field in the lossy 
cavity can be performed straightforwardly as is ex­
plained in the preceding section. 

Quantum mechanical behavior of the laser electric 
field (53) is characterized by the following Schrodinger 
type non-linear functional differential equation. 

ili :t Q(E, t) 

= ~fd3x { - li2 6E~~)2 + C2
[VE(X)]2} Q(E, t) 

ilia Q, (E, f) +'2Eolog Q(E, t) 'Q(E, t) 

+1- ~3x E(x)e'P(x, t)Q(E, f). Eola 
(54) 

To further simplify the analysis, we take the complete 
normalized orthogonal system {en}nENC5 (R3) to be the 
eigenfunctions of the three- dimensional Laplacian v2• 

Namely we have 

V 2en(x) = - k~en(x), nEN, 

where - kn
2 ,s are the eigenvalues. 

(55) 

As the quantized electric field E(X)E *c{enJ (R3) and 
the state functional Q (E, t) are decomposed as 

E(x) = [L a{~)ep(x)Jn 
p~n 

and 

n(E, t) = [Q(i n ), t)Jn, 

respectively, we can rewrite Eq. (54) as 

[(II :t Q(a(n), OJ n 

= [_ li2 L j ~ + c
2k! a(p)2} n(a{nl ,01 

2 p "n t ila p 2 In 

[
ilia Q,(a(n), t) «(n) )J 

+ 2Eo"'log Q(a(n), t) ·n a ,t n 

(56) 

where we have made the abbreviation Pp(t) 
= fep(x)e'P(x, t)d3x. To solve the functional differential 
equation (54), it is enough to consider its finite dimen­
sional cross section ("cross section" denotes the 
finite dimensional element inside the bracket [ In) 
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(57) 

If we put 

S1(a<n>, t) = n S1(a<;l, t), (58) 

Eq. (57) reduces to the following one-dimensional ones 

1 .. 
+Ea<;lpp(t)S1(a<;l, t), 1 ~p ~ n. 

o 
(59) 

A characteristic solution of Eq. (59) is obtained by 
introducing the so-called photon coherent state S1 c 

(a<;l;z), z E Z(Z denotes the complex plane). The 
coherent state is defined as an eigenstate of the annihi­
lation operator14 ; 

(21f!pC) 1/2 (aa~;) +Ckpa<;l) S1 c (a<;l;z) 

= zS1 c (a(;);z). (60) 

Namely, the coherent state 

S1 c (a(;);o-p(O - c~p 6-p(i») 

xexp [-2fi~kp ~/(i)-~{O"p(i)~p(t)+gp(t)}J (61) 

solves Eq. (59), provided that o-p(t) satisfies the classi­
cal equation of motion 

a • 2 2 1 .. 
ffp(t)=--o-p(i)-c kp Q'p(t)--Pp(t), 

EO EO 
(62) 
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and gp(t) is related to ap(t) as 

o ('lick!> nc
2
kp2 

()2 1. ()2 
gp(t)+gp t)= 2 + 2 O"p t -'2O!p t . 

Correspondingly, quantum mechanical behavior of 
the laser electric field in the lossy cavity can be re­
presented by the photon coherent state 

S1 c (E, t) = [S1 c (a(nl, OJn 

= r n S1 c (a<;l;O'p(t) - ~k' cYp(t») t"'" c p 

(63) 

x exp (- ,"~k, ",it)' -j, {o,(l)a,(1) + ",(O}U •. 
(64) 

Therefore, we may be allowed to mention that the 
quantized laser electric field in the lossy cavity fluctu­
ates around its classical value E(x, t) = [2:t,"nO'p (t)et> (x) In 
with minimum uncertainty. This provides a quantum 
theoretical background to the validity of the conventional 
semiclassical treatment of the lossy laser. 
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Unified theory of direct interaction between particles, 
strings, and membranes 

Patricio S. Letelier a) 

Department oj Physics. Boston University. Boston. Massachusetts 02215 
(Received 5 August 1977) 

A model of generalized relativistic membranes that contains as special cases, particles, geometric strings 
and geometric membranes and other new one- and two-dimensional objects is studied. The equations of 
motion for such objects in direct interaction are studied. The constraints on the interaction due to the 
freedom of gauge of the free model are solved. A scalar, a vectorial, and a tensorial type of interaction 
are discussed. Conservation theorems associated with Poincare invariance of the action are studied, as 
well as the generalization for action-at-a-distance theories of the action and reaction law. 

1. INTRODUCTION 

Motivated by the recent applications of the quantized 
model of geometric strings to the study of elementary 
particles, 1 we studied a classical theory of direct inter­
actions between geometric membranes. 2 

Analyzing the models of direct interaction between 
geometric strings3 and geometric membranes,2 we 
arrived at the conclusion that considerable improve­
ments and new insights would be gained if these theories 
were cast in a manifestly gauge invariant form. When 
the previous program was accomplished, 4,5 we 
realized that the gauge invariant theories of direct 
interaction between particles, 6 between strings, and 
between membranes have several things in common, 
since the formalisms of these three theories are 
similar, In particular, the conservation theorems 
for these theories can be derived in a completely 
parallel way. 7 Thus, we concluded that a unification of 
these theories in a single formalism would provide us 
with a better understanding, as well as show us in a 
better way their differences and similarities. The 
realization of the above program is discussed in the 
present paper. 

The generalization of the model of geometric string 
to include particles on it is as old a problem as the 
theory of geometric stings itself. The motivation 
to realize this program has been, mainly, to obtain a 
richer dual resonant model of particles8 and to solve 
the problem of quark confinement. 9 

In this paper we study how particles and strings can 
be attached to a membrane, at the classical level, 
and in a general way. As a particular case we have the 
action for particles attached to one string. The general 
object of the theory is a membrane with a one- param­
eter family of strings and a two-parameter family of 
particles attached to it. By switching off the strings and 
the membrane, the particles and the membrane, the 
particles and the strings, we recover the action for 
particles, strings and a memberane, respectively 0 

In Sec. 2 we study the free membrane equation of 
motion; in particular we study the behavior of the edges 
of open objects. 

alpresent address: Departamento de F~sica. Universidade 
de Bras;lia 70. 000 Bras~lia, Brazil 

In Sec. 3 we study the direct interaction between 
membranes; in particular we study and solve the 
constraints that are a consequence of the gauge freedom 
of the theory. A s a particular case we reproduce the 
interaction between particles, between geometric stings, 
and between geometric membranes previously studied by 
us. 7 

In Sec, 4 we examine some particular cases of ten 
sorial, vectorial, and scalar interactions. 

In Sec. 5 the conservation theorems associated with 
Poincare invariance of the action for the system of 
direct interacting membranes are studied. The 
conservation theorems generalize the conservation 
theorems previously studied by us. 

In Sec. 6 we study the "action and reaction law" for 
different types of membranes in direct interaction. 

In Sec. 7 we discuss some possible applications and 
generalizations of the previous results. 

2. FREE MEMBRANES 
In this section we discuss the action for a free 

relativistic membrane, with a family of strings and a 
"cloud" of particles moving on it. In particular we 
study the case where the particles and the strings are 
fixed on the membrane, The space-time where the 
different objects evolve in Minkowski space with metric 
1)"" of Signature - 2, 

First, we study the Lorentz scalar densities that can 
be formed at a point on the membrane with the 4-velocity 
of one particle if (i); with the bivector that spans the 
string world sheet :0,"v(TA); and with the trivector that 
spans the membrane world tube :0,"VA(/;U). The Greek 
indices run from 0 through 3, A, B, C, . '0, from 0 to 1 
and U, V, W, 0' " from 0 through 2. The parameters 
t, TA, and ?;u do not need to be Lorentz invariant. We 
will require that v", :0" v, and:0" vA transforms as scalar 
densities under the reparametrization of t, TA, and ?;u 
respectively. This point will be studied in great detail 
later in this section. 

A particle world line on a string world sheet can be 
described by a function Cl!, such that a(TA) = O. Thus the 
conditions for a particle to be on a string can be 
implemented by 

(2.1a) 

A string world sheet inside a membrane world tube can 
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be described by a function t1 such that (3(~U) = O. Thus the 
condition for a string to be on a membrane can be 
implemented by 

TA=TA(r'l, (3(1;U) =0. (2.1b) 

A particle world line inside a membrane world tube 
can be described by two functions l' and s such that: 
1'(l;u) == 0 and s(~U) = 00 Thus the condition for a particle 
to be on the membrane can be implemented by 

(2.1c) 

If the particle is on the string and the string is on the 
membrane, we have 

(2.1d) 

Jj'V and Z"vx are a simple bivector and a simple tri­
vector,10 respectively, so 

z" 'VZX.) = 0, 

Z·"VA.!:"" ... = 0, 

ZU [~>'Z·a:rr = 0, 

(2.2a) 

(2.2b) 

(2.2c) 

where [ ... 1 denotes antisymmetrization in the enclosed 
indices. 

The particle and the string lie on the membrane, thus 

VC" ;i/'" J = 0 , 

ZU(vz"'"' 1 =0. 

If the particle lies on the string, we have 

V'U 'E"') = O. 

(2.3a) 

(2.3bl 

(2.4) 

All the independent invariants that can be formed out 
of v", Z"V, Z .. V>., 17uv, and €U">.a that satisfy (2.2) and 
(2.3) are 

_ 1 "VA 
a~3iZ L;"vx, 

K~ (v"vaZ .. vZ~)1/2, 

W ~ (vI' Z .. ..sZ(8)2/3. 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

(2.5e) 

That (2.5) are the only independent invariants that 
satisfy (2.2) and (2.3) can be seen by forming all the 
possible scalar combinations of the elements previously 
described. Some useful identities are 

ZUVL;VXZA~ =2YL;a", 

ZU<llBLaa.L;Pv), = 31 aL""\ 

ZU">'ZvXL~BL;aB = 4aY, 

*L;""*Z~ = 2y1f" _ ~ ZU"Z~, 

(*Z"" '" ( .. vaBf:aB)' 

(2,6a) 

(2.6b) 

(2.6c) 

(2.6d) 

(2,6e) 

Let us consider a 2-family of particles characterized 
by a vector v" =d'[t(~U), 1;1, !;2] and a density 
p=p[t(/;u), !;U). Note that we have adapted the parmetri­
zation of the family of particles to the parametrization 
of the membrane, so now the functions rand s that 
appear in (2. Ic) can be taken as 1;1 = const and 1;2 = const 
and the different wor ld lines of the particles will be 
described by different values of the constants. 
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Let us also consider a one parameter family of strings 
characterized by a bivector 1:"" =L"v[TA(~), h), where 
h is either ~1 or ~2, and a density A=A[TA(l;u), ?;U]. Now 
the function i3 that appears in (2. Ib) can be taken as 
h = const, described by different values of the constant. 

We shall demand that vP-, zj'", and L"vx transform like 
scalar densities under reparametrization as mentioned 
above. This meanS 

if 1..' p. -~if' 
1, - at' , 

1:"".T. 'z w = J( TA /TB ' )Z,"v, 

L"v>,.t. 'ZV"), =J(tU / tU')Z""\ 

vJJ.L.'vIJ.:::::vJ..L , 

(2.7a) 

(2.7b) 

(2.7c) 

(2. Sa) 

(2. Sb) 

where J is the Jacobian of the indicated transformations, 
We shall always assume that all the transformations are 
nonsingular and that the transformation of the time 
coordinate t, TO, and to leave invariant the interval 
(_00, +00). 

A "representation" of v lt , Zit", and Z"VA is given by 

dz'" viJ.::::::-, 
dt 

L UV = €ABy~y~, 

L;"VI>. = E
UVW x~x~x~, 

(2.9) 

(2,10) 

(2.11) 

(2.12) 

where EAB and EUVW are the two- and three-dimensional 
Levi-Civita symbols normalized as follOWS: 

From (2,3) we obtain 

(2,13) 

(2,14) 

(2,15) 

If the particles are moving along the strings, we get 

(2,16) 

where aA
, bU

, and c~ are functions that transform as 
their indices indicate. Note that they are restricted by 
conditions like v"v" = bUbux't;x"u> 0, etc. The functions 
bU and c~ may be used to describe the motion of the 
particles and strings relative to the membrane and the 
function aA to describe the motion of particles on strings 
relative to the strings. 

The action that describes the system of particles and 
strings moving on the membrane is taken as 

(2.17) 

where d 3 !; denotes dl;°d?;ld!;2" The integration in 1;0 runs 
from - 00 to + 00 and the range of !;1 and t 2 will depend 
on the type of object with which we are dealing; they 
will be specified later. e is a constant parameter. 

The invariants (2,5) can be expressed in terms of 
xt, through (2.9)-(2.15). Thus, (2,17) will give an 
equation for Xu alone, In order to have an action 
invariant under a reparametrization of all the param-
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eters involved in the theory we shall require that n* 
be homogeneous function of degree one-half in its 
variables and that the densities transform like 

(2.18a) 

(2.18b) 

t iJ l' 
P-'P=Tt P, (2.19a) 

(2. 19b) 

Now we will specialize the Lagrangian density n* in 
order to describe particles and strings attached to the 
membrane. In this case w=O and K=v(-2y)I/\ so the 
dependence of the action on the invariants reduces to 

(2.20) 

Furthermore, in this case the geometry of the problem 
gives us a natural parameterization, Let us choose the 
parameters ~o and T' in such a way that xb and yi: 
represent the velocity at each point of the membrane 
and at each point of the string respectively. Then, if 
the particles and the strings are fixed with respect to 
the membrane we will have 

?v~ ax~ oz~ 

(i·To II (ltD II Tt ' 

and without loss of generality we can demand 

(l\,~ ax~ az~ 

(l°To = a~o =Tt . 

(2.21) 

(2.22) 

We can also choose the parameter ~1 and T1 in such a 
way that one of the space like vectors of the membrane 
is parallel to the string spaceUke vector. Moreover, 
without loss of generality we can impose 

Yi ==xi· (2.23) 

When we choose this parametrization the family of 
strings will be described by the parameter ~2, i. e. , 
h = ~2. 

From (2.22), (2,23), (2.5), and (2,9)-(2.15) we have 
that 1'2 and yare related to the metric tensor of the 
membrane world tube, auv , as followsc 

y =detaAB • 

(2.24a) 

(2.24b) 

(2.25c) 

The identification (2.22) and (2.23) tells us that we 
need only one parameter TO" t = TO = ~o and one parameter 
~ = T' = 1;'. We shall also introduce the notation 1) = 1;'. 

In the general case e * 0, P * 0, and A * 0 the freedom of 
reparametrization (gauge) left by these identifications 

T-T'=T'(1;U), 

~ - ~/=~'(O, 

1) -1)' =1)'(1)), 

(2,25a) 

(2.25b) 

(2.25c) 

From (2.18) and (2.19) we find that P and A transform 
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under (2.25) as 

P-'P=J(r,:~,)p, (2.26) 

A-'A=:;,A. (2.27) 

Thus, in the adapted parametrization used, p=p(L1)) 
and A= A(1)). 

The action (2.20) describes free particles when 
A= e = 0 and p = m6 (!;)0(1)) , free geometric strings when 
P = e = 0 and A = ]1;16(1)), and free geometric membranes 
when P=A=O and e=9J2, where m is the mass of the 
particle and 1'v1 and IDl are constants [see Refs 0 4 and 5]. 
When p=!(06(1)), A=M6(1)), and e=O we have that n 
describes a string with particles attached to it, i. e. , 
a generalization of Takabayasi's "realistic" model of 
strings,8 that we shall call a p -string. Takabayasi's 
model is the particular p -string with Lagrangian density 
strings,8 that we shall call a i)-string. Takabayasi's 
model is the particular p-string with Lagrangian density 

(2.28) 

The gauge freedom of this model is T - T' = T(~, T) and 
~ - e = ~ + a, where a is a constant. 

When p = 0, A'* 0, and e '* 0 we have the generalization 
of the p-string model to one dimension higher, i. e. , 
an s-membrane. The general case will be named 
p - s -membrane or simply membrane. 

For particles we have that the gauge freedom is 

T- T' = T'(T), 

for geometric strings, 

1;A - 1;A' = 1;A'(1;B), 

and for geometric membranes, 

1;u- 1;u, = i;U'(t V). 

(2.29) 

(2.31) 

A discussion of this point can be found in Refs. 4 and 5. 

The range of ~ is taken as P < ~ < iJl for open strings 
and for open membranes in the direction alo~; and as 
Al < ~ -"S 61 for closed strings and closed membranes in 
the same direction; and as - 00 < ~ < + 00 for particles. 
The range of 1) is taken as ~ < 1) < 62 for open mem­
branes in the direction a l(1) ; as A 2 < 1) -"S 62 for closed 
membranes in the same direction; and as - 00 < '11 < + 00 

for strings and particles. 

In the case of closed strings and closed membranes 
we require that the objects be closed in a geometrical 
sense, as well as being smooth, i. e., for strings we 
require 

and for membranes 

X I' (T, AI, 1)) = xl' (T, 61,1)) , 

XI'(T, ~,;k2)=XI'(T,~, 62), 
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(2.32b) 

(2.33a) 

(2.33b) 

1900 



                                                                                                                                    

(2.33c) 

ax" \ 2xI' \ 
a77 "~~2 = ---aTI "=0 2 • 

(2.33d) 

In the case of open strings and open membranes the 
gauge freedom is further restricted by 

(2.34a) 

and 

(2.35a) 

(2.35b) 

respectively, in order that the boundaries remain 
invariant. 

We also consider semi-open membranes. In this case 
the conditions are either (2. 33a), (2.33c), and (3. 35b) 
or (2.33b), (2.33d), and (3.35a) depending On which are 
the open edges. The conditions (2.32)-(2.35) were 
studied in Refs. 4 and 5. Note that for p-strings, 
p, s -membranes, and p - s -membranes, the conditions 
(2.34) and (2.35) are automatically satisfied. 

Let us consider the variation of the membrane world 
tube 

x" - x 1" = X I' + ox I' , 

OX"(T=±OO, ~,1))=0, 

oX" (T, ~ = At, :\\ ot, 6\ 1)) = 0, 

OX"(T,~,1)=A\:\2, 02, 62)=00 

(2.36) 

(2,37a) 

(2037b) 

(2037c) 

The equations of motion for the body of the free mem­
brane are obtained by demanding that the action (2 0 20) 
be stationary under (2.36)-(2.37). They are 

_a _ _ o_n_ 
asu axil - 0. 

Equation (3.38) can also be written as 

tlxl'=D, 

where 

(2.38) 

(2.39) 

(2.40) 

The symbol yAB denotes the elements of the inverse 
matrix of IlaABl1 0 

An open membrane will be closed in a physical sense 
if no momentum crosses the boundaries of the world 
tube. This condition is achieved by requiring 

P~ 11~;l,ol = 0, 

P~ ["~~2,i2 = 0, 

where 
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(2.41a) 

(2.41b) 

en ) +-()UuvX • 
oCT VI' 

(2.42) 

For semi-open membranes only one of the conditions 
(2.41) applies depending on which are the open edges. 
Conditions (2.41) in the case of geometric objects imply 
that the open strings' end points as well as the open 
and semi-open membranes' edges travel with the speed 
of light:,5 for p-strings, p-membranes, s-membranes, 
and iJ - s -membrances (2,41) do not necessarily imply 
the same properties for the strings' end points and 
membranes' edges, e. g. , for the Takabayasi model of 
p -strings one has solutions where the str ings' end 
points travel with a velocity8 less than c. 

The multiplication of Eq. (2.39) by ,~" yields 

(2.43) 

Furthermore, in the case of geometric objects we 
have 

:~"1)xu"'O, (2044a) 

,~I'1)x" '" D, (2.44b) 

where we have introduced the notati5n (x" ,{I', x") 
'" (xg, xf, xtl. The previous identities are consequences 
of the invariance of the respective actions under the 
reparametrizations T- T' = T'(T, ~,1)), ~ - ~' = ~'(T, ~,1)), 
and 1) ~ 1)' = 1)' (T, ~, 1)), respectively. Also, we find in the 
general case 

,y"p~ ",0, 

x"P~""O, 
and for geometric objects 

(2.45a) 

(2.45b) 

x" Pt '" 0, (2. 46a) 

l"P~ "" 0. (2.46b) 

Another important concept associated with the free 
membrane is the energy-momentum energy tensor 
denisty defined on the membrane world tube. It can be 
easily obtained using the expression 

Thus, 

T"V an 2',,'v an 2 AB " v = a (p 2V 2 ) p x x + a(A2y) A yy XAX B 

an 
+-ua"vx"xv, aa u v 

We also have that 

(2.47) 

(2.48) 

T"" x" = nx-v, (2. 49a) 

T"vx"xv=nV2 ?0, (2.49b) 

P~x" = no~. (2.50) 

Thus, from (2. 49b) we find that n must be nonnegative 
function of its arguments. 

The energy-momentum tensor defined in all the 
space is 

(2.51) 
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From the equation of motion we find that 

(2.52) 

i. e., the energy and the momentum are conserved. 
Note that if one postualtes (2.48), Eqs. (2.52) yield 
the equation of motion (2.39). A discussion of this 
point for geometric objects can be found in Ref. 11. 

We shall close this section by giving two particular 
cases of free Lagrangian densities 

r2 = m /)(~ - ;\l)V + 11126(~ - <SIlt· + 111';::-::; , 

r2= m6(1) - x:)-J-y +W1va. 

(2.53) 

(2.54) 

(2.53) describes an open string with two particles of 
masses 1111 and 1112 attached to its end points, and (2.54) 
describes an open membrane with a string located on its 
boundary. In the latter case 1) = ~ is taken as the equa­
tion of the boundary. Thus, (2.53) is a classical analog 
to the problem of attaching quarks 9 to the strings' end 
points, and (2.54) represents the same geometrical 
problem in one dimension higher. 

3. INTERACTING MEMBRANES 

In this section we consider a system of N direct 
interacting membranes, interacting via a two-body 
type of force. The action for this system is taken as 

(3.1a) 

where 

!R !R (;." L"v L "VA x"' X" L "V ""VA x"' P- P- ;\ ;\) pq == pq'- p' P' P , P' _ q' Q ,LJ Q ' q' P' q' P' q , 

(3.1b) 

JJ,q = 1,2, ... ,N, 

and p and ;\ are densities that transform like p and ?t, 
respectively. 

In general we do not require that !R pq be symmetric 
under the interchange of membranes. Note that we have 
restricted the dependence of!R pq to xiJ. and its first 
derivatives. This has been done in order to end up with 
second order integra-differential equations. This 
restriction leaves us with enough generality in the inter­
action term to describe a large class of interesting 
interactions. Another restriction on!R pq is that its 
dependence on x: and x: be such that when the 
membranes p and q are far apart the interaction be zero 
This condition can be implemented by requiring that the 
dependence of!R Po on x: and x: be such that it produces 
the desired property, e. g. , !R p. a: o[ (x p - Xq )2] (See Ref. 
5). 

Now let us perform the variation of each membrane 
world tube in the action (3.1); we get 

(3.2) 

From (2.37), (3.2), and the variational principle we 
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obtain 

(3.3a) 

(3.3b) 

Equation (30 3a) can be written in an equivalent form as 
follows, 

~ _(_a _ a _il_)1' 
rt" - ax" apr ax" po 

p p pu 
(3.4) 

For the subset of closed membranes the conditions 
(2.33) also apply in the present case, but for the subset 
of open or semi-open membranes we must replace 
(2.41) with 

I.lJl I -1 -1=0 p" Ip-'p'Op , 
Ill;" IVi::,c! = 0, 

where 

(flU _pu +_il_1' 
+'p" - P" aX" p 

pu 

(3.5a) 

(3.5b) 

(3.6) 

From the identities (2.43) and (2.45), and the equa 
tions of motion we obtain the following constraints on 
the interaction: 

a ( . a) a (' a) a (. a) 
aTp 1 - x~ ax: - a~p x~ a1: - (1)p x~ a~: 

(3.8a) 

(3.8b) 

The condition (3.7) can be obtained also by demanding 
that the action (3.1) be stationary under the change of 
parametrization Tp - T; = Tp + 6 Tp( Tp ' ~P' 1)p). 

For geometric objects we have that (2. 44a), (2.44b), 
(2. 45a), and (2. 45b) give us the following constraints 
on the interaction 

[aa~p (l-xta:~) -a~p0:a::)-a!p(k:axa~)J1'p=0, 
(3.9a) 

[a~p (1 -x~ a;~) -a :p (K" a;:) -a ~p (x~ a::)] l' p =(~: 9b) 

(3.10a) 

(3. lOb) 

The constraints (3. 9a) and (3. 9b) can also be found by 
demanding that the action be stationary under ~ - ~' 
= ~ + OHT, ~,1)) and 1) - 1)' = 1) + 61)( T, ~,1]), 
respectively. 

The constraints (3.8) and (3.10) are automatically 
satisfied as a consequence of the identities: 

." _il_L:"" - 0 
x ax" -, (3.11a) 
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• 0 "''"X X"'ox",LJ =0, (3.11b) 

~'" _O_"""X _ 0 x ox",LJ -, (3.11c) 

(3.11d) 

To solve the constraint (3.7) we realize that this con­
straint comes from the fact that the free action is in­
variant under (2.25), L e., that st transforms like a 
scalar density of weight 1 under this transformation. So 
the constraints will be solved if mpq transforms like a 
product of scalar densities, Le., like stpst. under (2,25L 
First we construct out of the argument ofm pq all the 
independent quantities that transform as a scalar density 
under (2.25); they are px", ~t,,", and eL: "vx, where e is 
a constant parameter. Now the general solution to the 
problem is a function 

(3.12) 

homogeneous of the first degree in the variables 
pi~, XpL:~", epL:~vx; homogeneous of the first degree in 
the variables Pqx:, XqL::", e.L::vx; and arbitrary in the 
variables x~, x:. Now it is easy to check that the con­
straint (3,7) is solved. 

When p = 15(015(17) and;;; = e= 0, Eq. (3.12) describes 
the interaction between particles, then 

(3.13) 

Note that the arguments xt/vp and x:/v. are homoge­
neous functions of zeroth degree in x~ and x:' respec­
tively, thus R pq = ~)(X"/vp,x:/v.,x~,x:) can be taken 
as an arbitrary function of all its variables. 

When p = e = 0 and ;;: = 15 (17), and p = X = 0 and e = 1 , 
(3.12) reproduces the interaction between geometric 
strings and between geometric membranes, respective­
ly. In these cases the constraints (3.9) are automati­
cally satisfied. 4,5 

An important particular case of interaction is ob­
tained when the N objects are described as follows: 

1903 

xj=zj, i,j=I, ... ,P; 

A. = M.D(TJ.) =M."A., 

p.=p.=e.=e.=O, 

x~ = x~ , a, b = P + 1, ... , P + S; 

er =IDlr =IDlrer , 
- -
Ar=Ar=Pr=Pr=O, 
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(3.14a) 

(3.14b) 

(3.14c) 

(3.15a) 

(3.15b) 

(3.15c) 

(3.16a) 

(3.16b) 

x:=y:, Y,s=P+S+l, ... ,P+S+M=N. (3.16c) 

In this case the action (3.1) reduces to 

AT=~ Jm;Y;dT I +~ Jdh.Ma (_yY/2 

+66 !dT.d3t- V (a.)1/2R. 
1 br 1 1 IT 

; r 

(3.17) 

where we have introduced the notation d2 T = dT d 1;. 
Equation (3.17) describes the action for a system of P 
particles, S geometric strings, and M geometric mem­
branes interacting via a two-body type of direct inter­
action between objects of the same class as well as 
objects belonging to different classes. 

For the system under consideration, the equations 
of motion (3.4) and (3.5) give us 

d v!-' 
m. d- ~=L!-'(v.+u.+W.), 

, 7i Vi 1 1 , 1 
(3.18) 

(3.19a) 

(3.20a) 

(3.19b) 

(3.20b) 

[IDlr (ar )1/2Y;/L + B;" (CPr + E:lr + Er)1r~A;'O$ = 0, (3. 20c) 

where the definition of the symbols used in (3.17)­
(3.20) can be found in Ref. 7. 

4. PARTICULAR CASES OF INTERACTIONS 

The gravitational interaction between p -s -membranes 
in the weak field approximation is given by 

(4.1) 

where flp and fl. are constant and T"v is given by (2.48). 
T"" is a homogeneous function of degree 1 in the vari­
ables p"", XL:"v, and eL:""x. This can be seen from (2.48), 
(2.5), and the identities 

(4.2) 
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(4.3) 

The study of this interaction for the case of geometric 
membranes can be found in Ref. 5. The gravitational 
field associated with (4.1), in the case of geometric 
strings and Takabayashi's realistic strings, has been 
studied by Stachel and the author. 12 

The "electromagnetic" interaction between p-s-mem­
branes is given by 

!R =p p x"x o[(x -x )2] P. ~. p ." p • • 
(4.4) 

In the case of particles [p= Qo(Oo(1J)]' this interaction 
reduces to the Fokker principle of electrodynamics. 13 

For geometric strings and geometric membranes (4.4) 
is not allowed (P=O). 

From (3.4), (3.6), (3.3), and (4.4) we find 

(4.5a) 

(4.5b) 

(4.5c) 

where 

(4.6) 

Equations (4. 5a) and (4. 5b) tell us that the open edges 
of open or semi-open membranes as well as the end 
points of open strings do not interact with the "field" 
F"v. 

Another interesting interaction between p -s -mem­
branes is the one given by 

(4.8) 

This interaction is not allowed for particles and geo­
metric membranes (~= 0). Let us consider only two 
closed membranes interacting via (4.8), then the 
equation of motion (3.4) reduces to 

'" - '>'''V Jl.j~pA=>'pL.Jp Fox"v' p,q=1,2, (4.9) 

where 

(4.10) 

(4.11) 

Note that Fx"v is a totally antisymmetric tensor. From 
(2.33), (4.10), and (4.11) we find 

0xFx"v = - 41TJ"v, 

where 

(4.12) 

(4.13) 

Equation (4.10) can also be written in terms of differ­
ential forms as 14 

F d ·l, ,/,= ~'I' d "Ad v = '1'. 'I' - 3! '+'"v X X • (4.14) 

The Poincartl lemma tells us that 

dF=O. (4.15) 
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Equation (4.15) written in components is 

(4.16) 

At this point we can recast the action-at-a-distance 
formalism in terms of the field F"vx that obeys the field 
equation (4.12) and (4.16). In particular we can study 
the free field (J"v = 0). For a discussion of this point see 
Refs. 4 and 5. 

Let us define the dual of F "vX' 10 e., Fp given by 

(4.17) 

From (4012), (4.17), and the condition J"v = 0 we get 

o"Fv - 0vF" =0, 

thus 
Fy = 0v¢' 

(4.17), (4.19), and (4.16) gives us 

O¢ =0. 

(4.18) 

(4.19) 

So the free field theory associated with the interaction 
(4.8) is a massless scalar field. This interaction was 
first studied by Kalb and Ramond3 in the context of the 
theory of direct interactions between geometric strings. 
Recently Lund and Regge 15 found that (4.16) and (4.12) 
can be used to study vortices in a superfluid. The "gen­
eralization" of (4.8) for the case of geometric mem­
branes can be found in Ref. 2. 

Many other interactions that can be "factorized" like 
(4.1), (4,4), and (4.8) could be written. The study of 
field theories associated with a given "factorizable" 
interaction between p-s -membranes is a trivial exten­
sion of the one that we carried out for geometric strings 
and geometric membranes. 4,5 

5. CONSERVATION THEOREMS 

In this section the conservation theorems-energy 
momentum conservation and center-of-mass theorem 
and angular momentum conservation-are derived as 
a consequence of the Poincare invariance of the action 

AT' 
Let us define the reduced action related to (3. 1) by 

"reducing" the range of the time evolution parameter 
T and keeping the same ranges of the spatial param­
eters as before, Le., 

(5.1) 

where 1, T~**, -r:, and -r:* are arbitrary constants 
restricted only by the requirement that 1* and -r:* re­
fer to a later time than 1 and -r:, respectively. 

The variation of A** gives us 

f ** oA** =~ d31:~ 

* 

where 1'; is defined by changing the range of T. in 
(3.3b) as follows, 

1'!=1'pl-r:.; T.'; -r:*]. 
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We also define the variation oA* by letting in (5.1) 
T:--oo, -r:*-+oo, Leo, 

oA* '" oA**[ r: - -00, -r:* - +00]. 

From (5.4), (5.3), and (5.2) we get 
** 

oA* =~f d3tp [a aU. 
, * xpa 

Equations (3. 3a) and (5.5) yield 

oA*=~f** d3tp a~~{[ax~v (np+1'p)] ox~}. 
* 

Stoke's theorem and (506a) give us 

(5.4) 

(5.5) 

oA*=1~ {D*dtf/\dt;EvVW[a a" (np+1')ox~, pJal p xpw 'J (5.6b) 

where aD* denotes the boundary of the membrane world 
tube limited by the surfaces T= T* and T= T**. 

From (2.33), (3.5), and (5. 6b) we have that 

oA* =~ 1 d2~pox:~(n, +1',) I ** 
Cp P Tp=1'p 

(5.7) 

where we have introduced the notation d2~p"'d~pd7'/p. 
For membranes, C p denotes the portion of the surface 
Tp = constant, limited by the corresponding membrane 
world-tube. For strings, Cp denotes the Cartesian 
product of the line defined by the intersection of 
Tp=const with the corresponding string world sheet by 
(_00<7'/,<+00). Forpartic1es, Cpis(-oo<~p<+oo) 
X(-oo<7'/~< +00). 

Equation (5.7) is gauge invariant because (5.5), (2.33) 
(2 033), and (3.5) are gauge invariant expressions, even 
for the most general gauge, Leo, the gauge associated 
with geometric membranes. For a discussion of this 
point see Ref. 7. 

A. Energy-momentum conservation 

Let us impose on A** the condition of being invariant 
under arbitrary infinitesimal translations in time and 
space, L e. , under the transformation (2.36) with 

ox~ "'e". (5.8) 

Note that invariance of A ** under any transformation 
implies the invariance of A*, A and 9l •• under the same 
transformation, due to the arbitrariness of T:, r:, etc. 

Equations (5.7) and (5.8) suggest that we define the 
total four-momentum for the system of interacting 
membranes as the limit 

(5.9) 

Note that the definition (5.9) is gauge invariant, because 
we can always cast (5.9) in a similar form to (5.6) 
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adding to the RHS of (5.9) integrals that have the value 
zero. For a discussion of this point see Ref. 7. 

From (5.9), the equations of motion (3. 3a), Stoke's 
theorem, (3.5), and (2.33), we get 

pU.=~ fc/2~pa:u.(np+1'p) 

+~f" dT,/ d2~'a:u. 1',. (5.10) 
p Tp C P P 

From (5010), (3.4), and the invariance of9l,. under 
(2.36) and (5.8) we obtain 

p,,=~l d2~pa~,,(np+1'p) 
p cp x 

+6~[f"fT~-fTP f"] dT,dT. 
IK.. Tp _-0 _.. T. 

(5.11) 

where 

(5.12) 

Note that 

(5.13) 

aplJ._O l~p~No (5.14) 
aTp - , 

The conservation laws (5014) are a trivial consequence 
of definition (5.9). Also, (5.14) can be proved directly 
by making use of the equations of motion (3. 3a) and 
(3.5) and Eqs. (2.33). 

When we specialize np and9lf<! by imposing the condi­
tions (3.14)-(3.16), Eq. (5.11) yields 

pr,..m) = prp) + prs) + prm) + prpS) + prpm) + pr.m)· (5.15) 

Expression (5.15) represents the total 4-momentum 
for a system of P particles, S geometric strings, and 
M geometric membranes in direct interaction. The 
explicit form of the terms in the RHS of (5.15) can be 
found in Ref. 7. 

B. Center-of-mass-theorem and angular momentum 
conservation 

Let us impose invariance of A * * under arbitrary 
infinitesimal rotations in Minkowski space-time, i. e., 
invariance under (2.36) with 

OXp"=E,,VX~; E"v=-Ev,,' (5.16) 

The invariance of A ** under infinitesimal rotation and 
translations in Minkowski space implies 

a a x[,,7'/V]ex --9l + x[,,7'/V]ex --9l 
P. ax:. Po pv ax:v Po 

+x["lJV ]ex _o_9l =0 
.v ox:v Po ' 

(5. 17) 

where 

(5.18) 

Equation (5.17) will be satisfied when the dependence 
of 9l P. is through Poincare invariant combinations of its 
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arguments. These Poincare invariant arguments are 
known as the fundamental invariants of a given 
interaction, 16 The invariants that can be formed with the 
arguments of m,. are essentially the same as the funda­
mental invariants for two-body types of interactions 
between particles, geometric strings, and geometric 
membranes that we discuss in Refs. 4 and 5. 

Equations (5.7) and (5.16) suggest that we define the 
total angular momentum bivector for the system of 
interacting membranes as the limit 

L"~ ""- 'E 1 d2~,X~"1)vla i/a (n, + 1'~) I (5.19) 
P c, x, Tp-~' 

The equations of motion (3. 3a) give us the identity 

a [I" vI", a (n 1') o;;pu x, 1) ax;u p + p 

a a 
= XI"1)VI",-1' + x l "1)VI'" --1' 

- p ax~' 'u ax~u p' 
(5.20) 

To prove (5,20) we have made use of the identity 

o 
xr"1)vI"'--n ",,-0' (5,21) 

pU ox~u' , 

That is a consequence of the manifest Poincar~ 
invariance of the free action. 

From (5.17)-(5,20), (3.5), (2.33), and Stoke's 
theorem we find 

£"v=6 t:t2~ XI"1)vI"'~(n +1' ) ,Ja" ax~p p 

+'E'E[f~!T._!TP r~JdT,dT.l1d2~,d2~. 
1><. T P -~ -~ J T. c, c. 

x[x r"1)VI",-O-m +x l "1)vI",_O-m (5,22) 
, ax;," pU ax;u h 

Note that 

(5.23) 

aL"V 
--=0, 1~p~N. (5.24) a Tp 

Equation (5.24) can be proved in a similar way to (5.14). 
The conservation of LOi is known in the center-of-mass­
theorem and the conservation of LiJ as angular momen 
momentum conservation. 

When we specialize n, and m Po by imposing the 
restrictions (3,14)-(3.16), Eqs. (5.22) can be written 
as 

(5.25) 

Expression (5.25) represents the total conserved angular 
momentum bivector for the system under consideration. 
The explicit form of the terms that appear in the RHS 
of (5.25) can be found in Ref. 7. 

6. ACTION AND REACTION 

Let us consider two objects, p and q, of the same 
type and topology, eog., two closed s-membrane, two 
semi-open "realistic" p-membranes, interacting via a 
symmetric interaction, Leo, 

(6,1) 
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In this case the equation of motion (3.3) can be written 
as 

1) ,,_ f3 [--..Z..- _a _a ] 
,x, - Jd ;;. ax" - a;;u axl' m,., ,. , 'u 

(6,2) 

In writing (6.2) we have used the fact that Poincare 
invariance of the action implies translation invariance 
oOR, •. 

Stoke's theorem gives us 

/a3;;, a;;au a:l'fR,. = i.f1i;: Ad;;:~uvw~fRPo' 
• • ~w 

(6.3) 

From (6,2) and (6,3) we find 

1)pxpl' '" ja,3;;.!)1'~' 
_~ t:t;;UAd;;V, __ a1),o, 2Ja. .'VvwaxJ.t 

OW 

(6.4) 

where 

(6,5) 

Note that under a gauge transformation Tt. transforms 
like npno' and 

(6,6) 

Now we shall further restrict the interation by impos­
ing the condition 

(6,7) 

For particles, this condition is enough to assure that 
the second term in the RHS of Eq. (6.4) vanishes. For 
closed objects also, (6.7) makes zero the surface 
integral in (6.4). But for open or semi-open objects 
we must add extra conditions to obtain the same result, 
e.g. , 

p = 1,2, (6.8a) 

p = 1,2. (6.8b) 

These conditions apply only to the open boundaries of 
open or semi-open objects. Equations (3.5) tell us that 
the conditions (6,8) kill the interaction at the boundaries, 
L e. , the boundaries move as in the free case. 

The conditions (G, 8) are gauge covariant, even under 
the most general transformation given by (2.31). 
Equations (6,7) are covariant only under the gauge 
transformation (2.25). If the two objects in consideration 
have more gauge freedom than (2,25) we replace (6,7) 
by 

afR~ol = 0, P = 1, 2, (6,9) 
oXpu T _.~ 

p 

These conditions kill the surface integral in (6,4) as 
well as being covariant even under (2031). 

If the interaction is such that it satisfies (6,0, and 
(6.7)-(6.9), depending on the type and topology of the 
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object as stated before, we have that (6.4) reduces to 

'I>.xt = J d3T/~:c' (6.10) 

The fact that under the previous assumption (6.2) can 
be cast as (6.10) is known as the "action-and-reaction 
law. " See Ref. 7. Now we can interpret the function 

I<. ~ as a function that describes a stream of impulses 
coming from the antisymmetry of 1<.:. in jJ and q tells 
us that the impulses emanating from p and q respectively 
are equal in magnitude with opposite signs. 

There is an evident asymmetry between closed and 
open or semi-open objects, because of (6. 8). In general, 
one of the most important properties of open objects1 
is that they can interact through their open edges or end 
points; Eq. (6. B) does not allow such types of inter­
actions. In the case of geometric objects, they 
are too strong due to the fact that the gauge freedom 
of these objects imposes strong conditions on the 
dependence of IR~ on its arguments, as discussed in 
Sec. 4. But for other types of objects it is possible to 
satisfy all the above mentioned conditions, e. g., the 
interaction given by (4. 4) satisfies all of them, even for 
open objects. Other examples of particular interactions 
that can be written like (6.10) can be found in Ref. 7. 

From (6.10), (6.6), (6.8), (3.5), and (2. 33) we get 

(6.11) 

Equation (6.11) can also be derived from (5.11) under 
the same assumptions. Equation (6.ll) tells us that 
(6.7)-(6.9) can also be regarded as the conditions for 
two objects being asymptotically free. 

The evolution of the angular -momentum bivector can 
be cast in a similar way to (6.10), as follows: From 
(5.20) and (6.1) we obtain 

a [[" vi", a ~ ] 3fU x, T) ax'" P 
, pU 

=}t3{:; [,"I"T)V)O<_O_IR ., ox;.'" 
+ xl "T)v)a a a xl "T)V)'" _0_", 

pU ax'" IR,. - api, ax~u ~ •• ,u , , 

Equations (6.11) and (5.17) give us 

_17_ fX("T)V)'" _a_~ ] 
o{:;~ t' ax;u p 

=fihJt: - ~fit;~ Adt;; 

x E Xl "T)V)'" a '" 
UYW • ax'" ~,." 

• 
where 
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(6.12) 

(6.13) 

a a + ;-;:-r;;'a r Xl "T)vJ 0< -- IR 
b,· (lx~u "" 

(6.14) 

The function 1<.:: has the following properties, 

A"v_ fJ"v_ flv" (6.15) ;. - -1\.; - -I\P.' 

The surface integral in (6.13) is zero for particles 
and closed strings if 

Xl "T)V) 0< aIR"I -0 P-1 2 • ax: T ~~_ -, -,. 

• 
(6.16) 

Equation (6.16) is only invariant under (2.25). In 
order to make it invariant under (2.31), it can be 
modified as follows, 

(6.17) 

For open and semi-open objects neither the condition 
(6.16) nor (6.17) kills the surface integral in (6.13). 
In this case we add the two extra gauge covariant 
conditions 

aIR Xl "T)V) 0< __ I =0 p = 1,2, ; ax; ;. -1-1 ' 
'p.Ap,G p 

aIR x["T)V]O<_- ,.,1 =0, p=1,2. ; ax; 
"p.iPi 

(6.1Ba) 

(6.18b) 

Conditions (6.18) are too strong for geometric objects, 
but for other types of objects it can be satisfied easily, 
e.g., the interaction given by (4.4) satisfies all the 
requirements to kill the surface term in (6.13). 

From (6.13) and (6.16)-(6.18) it follows that 

_a [,I" v]" _a_ n J - j. 3 () ~v (6 19) a t;~ x p T) ax~ u p - d?;.;{ Po • • 

Equation (6.19) is a generalization of the claSSical 
mechanics equations that relates the change of angular 
momentum to the torque. The function J::," describes a 
series of "angular impulses" coming from the object 
q that modifies the angular momentum of the object p. 
The antisymmetry of fJ~: with respect to p and q tells 
us that the impulses coming from p are equal in 
magnitude but opposite in sense to the impulses coming 
from q. Also, (6.19) tells us that the objects are 
asymptotically free, i. e. , 

2 

=6 
IF1 

Equation (6.20) can be proved in a similar way to (6,11). 

7. DISCUSSION 

In this paper we have unified in a single formalism 
all the main features of the theory of direct interaction 
between particles, strings, and membranes previously 
developed by us. 2,4,5,7 Also, we have generalized some 
of our previous results, e. g., the study of the action 
and reaction law studied in Sec. 6 generalizes the 
work done in Ref. 7 in several respects: The objects 
in interaction are more complex and the type of inter-

Patricio S. Letelier 1907 



                                                                                                                                    

action analyzed is more general. The methodology used 
to achieve these results does not depend on the parti­
cular type of action; it rather depends on its 
symmetries. 

It is interesting to point out that the relativistic geo­
metric membranes has not yet been quantized, one of 
the difficulties being that the general solution for the 
classical free membrane is not knowno (For a discus­
sion of this point see Refs. 2 and 5. ) This problem of 
quantization presents some similarities with the quanti­
zation of the gravitational field, of course, being in 
principle much simpler. 

The spinning string model of Neveu and Schwarz17 
has recently been derived18 by a procedure analogous 
to the one used by Dirac to obtain from the Klein­
Gordon equations the equations for electrons. 19 
It seems possible to use the same procedure to 
generalize the Neveu-Schwarz model in two different 
directions, first by using a more general model of 
string, e. g. , p-string, and second by using a higher 
dimensional model of string, e. g., geometric 
membranes or other types of membranes. In the latter 
case one might obtain a model bearing some similarities 
with the SLAC mode120 of hadrons. If this program can 
be realized, the study of the different objects discussed 
in this thesis might have some applications to describe 
properties of hadrons. 

Our model of interacting objects does not include 
properties like classical spin or isospin. Preliminary 
work shows that it is possible to include these properties 
in an analogous form to what has been done 21 for the 
theory of direct interactions between particles. 

The models of "bags" (closed membranes) studied 
in this thesis are models of empty bags, i. e. , they do 
not have fields inside. By filling the bags it seems 
possible to construct new models of hadrons. This pro­
gram presents some technical difficulties, e. g. , the 
boundary value problem as soc iated with the field inside 
the bags seems rather formidable. 
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We consider the nonrelativistic N -body scattering problem for a system of particles in which some subsets 
of the particles are identical. We demonstrate how the particle identity can be included in a general class 
of linear integral equations for scattering operators or components of scattering operators. The 
Yakubovskii, Yakubovskii-Narodestkii, Rosenberg, and Bencze-Redish-Sloan equations are included 
in this class. Algebraic methods are used which rely on the properties of the symmetry group of the 
system. Operators depending only on physically distinguishable labels are introduced and linear integral 
equations for them are derived. This procedure maximally reduces the number of coupled equations while 
retaining the connectivity properties of the original equations. 

I. INTRODUCTION 

Numerous methods for writing down mathematically 
well-behaved equations for the scattering operators in 
the nonrelativistic N-body problem have been developed 
in the past few years. 1-9 In most of these methods the 
particles are initially considered to be distinguishable, 
and any effects of particle identity are put in only when 
specific problems are treated. Since the number of 
physical situations and equation types is large, we here 
present a general method for constructing reduced 
equations which include the effect of particle identity. 

In the bound state case, the treatment of particle 
identity is generally considered a technical problem. 
One must solve the Schrodinger eigenvalue problem on 
the subspace of properly symmetrizedlO vectors of the 
Hilbert space. Such problems can be typically handled 
either by the elaborate mathematical machinery of the 
shell model 11 or with hyper spherical harmonics. 12 Both 
methods rely heavily on the theory of the symmetric 
group. 

On the other hand the inclusion of exchange symmetry 
in a scattering problem is far from trivial. The reason 
is that when exchange scattering is present, the 
asymptotic form of the scattering wavefunction includes 
both incoming and scattered waves in different regions 
of the many-body configuration space. There is no 
longer a single channel Hamiltonian which describes the 
asymptotic waves so all the well-known problems of 
describing rearrangement channels arise. One con­
ventional procedure is simply to solve the scattering 
problem for distinguishable particles and afterwards to 
sum the contributions of physically indistinguishable 
channels to the cross section. 

In some of the exact formulations of N-particle scat­
tering the exchange symmetry can be incorporated 

a}Work supported in part by U. S. Department of Energy. 
b) Permanent address. 
clN.R.C.-N.A.S. Sr. Res. Res. Assoc. 

directly into the scattering equations with a resulting 
decrease in the number of coupled equations, Such a 
procedure has been carried out by Lovelace in the 
three-body problem13 and by Kharchenko and 
Kuzmichev14 for the four-body Faddeev- Yakubovskii 
equations. The first explicit treatment of the scattering 
of an arbitrary number of identical particles was 
carried out by the authors in Ref. 15 (henceforth re­
ferred to as I). In this paper abstract group theoretic 
methods were used to incorporate exchange symmetry 
into the Bencze-Redish-Sloan (BRS) ]\i-particle 
scattering equations. 5,6,16,11 

The treatment presented in I made use of the specific 
properties of the BRS equations. In this paper we 
develop a general algebraic method of including ex­
change symmetry which can be applied to a large 
variety of N-particle scattering equations and allows the 
treatment of an arbitrary number of different kinds of 
identical particles, which may be bosons or fermions. 
Specifically we consider two important classes of N­
particle equations, the channel coupling class of equa­
tions, which are written in terms of transition 
operators, and the chain coupling class which are 
written for components of the N to N transition opera­
tor. The former class includes the BRS equations, the 
set of equations described by Bencze and Tandy, 19 and 
the equations of Chandler and Gibson. 9 The latter in­
clude the Rosenberg, 1 Yakubovskii,3 and Yakubovskii­
Narodestkii4 equations. For the sake of completeness, 
it should be mentioned that there also exist N-particle 
formalisms intermediate between the chain and channel 
coupling classes. In these formalisms2o - 22 integral 
equations are written for operators labelled by chains, 
but these operators are components of the physical 
transition operators which are labelled by two partitions. 
While it is straightforward to apply our algebraic 
method to these equations, for simplicity of discussion 
we .restrict our considerations to equations of the chain 
and channel coupling classes. 

The paper is organized as follows. Section II contains 
a discussion of the general form of the N-particle 
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equations and the basic group theoretic results associ­
ated with the treatment of identical particles. The 
symmetrization of the equations for the case of 
arbitrary numbers of identical particles is carried out 
in Sec. III and the mathematical properties of the 
symmetrized kernel are discussed. Section IV contains 
some applications and a study of the associated com­
binatorial problems. The results are summarized and 
conclusions presented in Sec. V. 

II. PERMUTATION SYMMETRY IN N-PARTICLE 
SYSTEMS 

There exist numerous formulations of N-particle 
scattering theory. Although they are all exact in princi­
ple, the N-particle dynamics is handled in different 
ways in the different theories. A common property of 
these exact theories is that they obtain coupled equa­
tions for operators or wave functions which are labelled 
by partitions or by chains of partitions3 of the N­
particle system. 

Equations of the channel coupling class are written 
for the transition operators 

Tab = va + vaG VV , (1) 

where a and b label partitions of the system. Equations 
of the chain coupling class are written for the quantities 
TA, where TA is a component of the N to N transition 
operator 

TOO=T=LTA
• 

A 
(2) 

We have used the notation 0 to indicate the N-cluster 
partition. The index A may be either a single partition 
or a set of partitions satisfying certain internal condi­
tions (a chain). We will use Greek letters a, p, Y,'" 

to indicate either a partition or a chain of partitions, 
and we write the set of possible labels as L. The 
general equation then takes the form 

TOI. =JOI. +6 KOI.BTB• 
i3EL 

(3) 

If Eqs. (3) refer to transition operators, the quantities 
TOI. and JOI. also carry a second label, Y, which indicates 
the initial state of the scattering process, i. e. , 
TOI. - TOI.r, and similarly for 101.. For the sake of simpli­
fying the notation we suppress this index except where 
it is relevant. 

Let us now assume that the N-particle system con­
tains some particles which are identical. In this case, 
the permutations of the identical particles form a 
finite symmetry group whose elements commute with 
the exact N-particle Hamiltonian. If all the N particles 
are identical, the symmetry group would be the full 
symmetric group on N objects, 5N • In the case that 
there are!? different kinds of identical particles with 
ni particles of the ith type (N = nl + n2 + ... + n k ), then 
the symmetry group of the system, 5, will be isomor­
phic to the direct product of symmetric groups, 5ni , 

viz. , 

(4) 

If the particles of the system are permuted by some 
element of 5, then the system labels will in general 
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also be affected. The group 5 induces a transformation 
group of the label set, L, into itself. Symbolically we 
write 

Pa = ()II, PE5. (5) 

Depending on the system of labelling, certain elements 
of the symmetry group will leave a given label in­
variant. For example, if the label is a partition, the 
interchange of a pair of identical particles within a 
single cluster of the partition or the exchange of two 
identical clusters will produce a new partition which is 
identified as being identical to the original one. The 
set of elements P E 5 for which 

Pa = a (6) 

forms a subgroup of 5 which we denote as 501.' 

The reduction of the integral equations (3) by the 
transformation group 5 is made possible by the trans­
formation properties of the inhomogeneous term and the 
kernel under 5. SpeCifically we assume that 

(7) 

and 

(8) 

In the case of the channel coupling equations, the sup­
pressed index of the inhomogeneous term also is as­
sumed to transform, viz., 

(9) 

We describe any labelled quantity which transforms via 
a relation analogous to (7) or (8) as label transforming. 
Specifically, this means that the transform of the 
labelled quantity is that same quantity with only its 
labels transformed. 

We now demonstrate that the quantities TOI. are label 
transforming. In general, the kernel KOI.B is a function 
of a complex parameter z which is taken to be equal to 
the scattering energy approached from above in the 
complex plane. We further assume that the kernel is 
compact or precompact in the complex z plane cut along 
the positive real axis. The analytic Fredholm theorem23 

then implies that Eq. (3) has a unique solution every­
where in the complex cut plane except possibly on a 
discrete set D. We then have the following: 

Theorem I: If 101. and KOI.B transform by Eq. (7) and (8) 
and E t. D, then 

(10) 

In the channel coupling case the second index of T trans­
forms like (9). 

froof: Apply f to the left of (3) and f- 1 to the right. 
Introduce r 1f between the K and the T. Using (7) and 
(8) gives 

(PTOI. r1) =IP", + L gPOI.PB(PTBp-1). 
(3E

L 

For any PE S as p runs over L, so does Pp. Replacing 
the unknown vector of operators PT'" p-t by the operators 
yPOi. yields a solution by (3), Since E i D the solution is 
unique. Q. E. D. 

The situations in which these transformation pro-
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perties are relevant can easily be seen. In the formal­
isms discussed above the dependence on a particular 
particle is entirely through a potential involving that 
particle. In that case it is easy to see that a renumber­
ing of the particles produced by any permutation simply 
changes the resulting labels as required. For example, 
in Ref. 19 classes of equations are considered in which 
I'''r==CrV~ and fH== V"W"r' In the first case, the coeffi­
cients C r depend only on the number of clusters in each 
partition and are therefore invariant under a transfor­
mation (CP.==C. 'f/ PE5). The inhomogeniety is there­
fore label transforming. In the second case (Kouri­
Levin! couplings) W",r is a numerical matrix whose ele­
ments sum to unity along each row and column. The 
value of a matrix element in this case depends on 
specific partitions, so in general W P.Pb * W.b • This 
coupling scheme therefore does not satisfy transforma­
tion property (9). 

Consider any label 0'. Since the permutation of iden­
tical particles does not change any physical property of 
the system, labels related by 0" ==PO' are physically 
equivalent. We therefore introduce a binary relation 

0" R 0' iff :3 PE5E PO' == 0". 

Lemma: R is an equivalence relation on L. 

The proof is straightforward. 

The relation R therefore splits the set L into disjoint 
equivalence classes. Since the quantities which depend 
on the label set are in some sense physically equivalent 
for all labels in a given equivalence class, we expect 
that class functions can be constructed carrying all the 
physically relevant information. These class functions 
will be constructed in Sec. III. 

We now construct the proj ection operators on states 
of proper symmetry. In the physical description of 
many-particle systems containing identical particles, 
the wavefunction of the system must transform by a 
one-dimensional irreducible representation of the 
symmetry group, namely 

P</!==± </!, 

the plus or minus being chosen according to whether an 
even or odd number of fermions is exchanged by the 
operator P. Since 5 is a product of permutation groups 
5;, and since every element of 5 i can be written as a 
product of transpositions, it follows that every element 
of 5 can be written as the product of transpositions of 
identical particles. We definefp to be + 1 if, when 
written as the product of transpositions of identical 
particles, P contains an even number of fermion trans­
positions, and - 1 if it contains an odd number Of fer­
mion transpositions. For convenience we write P == fpP 
and 151 for the order of the group 5. The symmetrizer 
on states of appropriate symmetry is24 

1" ~ 
R==TSlw P. 

PES 

It satisfies the following properties: 

R2==R 

and 
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(11) 

(12) 

(13) 

One may obtain a useful factorization of the operator 
R, which generalizes the one given in I. Consider a 
particular element of the label set, O'E L. Those ele­
ments of 5 which leave tl' invariant form a subgroup of 
5 which we label 5". We then have 

PO' == Ci. 'f/ PE5",c5. (14) 

If we label the equivalence class by a == [0' 1 and if N. de­
notes the number of elements of L in a, then by La­
grange's theorem24 we have 

(15) 

We then have: 

Theorem: For any element 0' of the equivalence class 
a, if 

R __ I_I, P 
"'-15",l pES 

" 
then 

(16) 

(17) 

(18) 

where P ",' '" is any permutation in 5 which maps 0' into 0". 

Proof: For each 0" c. a, P"" ",R", is a sum of elements of 
5 (together with their phases) which exhausts a single 
coset of 5",. The summation over 0" produces a sum 
over cosets. Since the cosets are disjoint, when the 
sum in (17) is expanded using (16), the resulting sum 
exhausts the entire group. The correctness of the nor­
malization follows from (15). Similar arguments yield 
Eq. (18). Q. E. D. 

Finally, we observe the result. 

Lemma: For any label transforming quantity, A'" 

R",A'" ==A "'R",. (19) 

Proof: By the label transforming property, we have 

PA'" =A"'P 'f/ PE5",. 

The result follows upon inserting the explicit expression 
for R"" Eq. (16). 

III. INTEGRAL EQUATIONS FOR IDENTICAL 
PARTICLE SCATTERING 

In this section we construct operators labelled by the 
equivalence classes of the label seL These operators 
carry the complete content of the permutation symmetry 
of the N-particle system. Integral equations for these 
quantities are derived, reducing the number of coupled 
equations and the number of quantities required for the 
description of real processes. 

Our first task is to define appropriate operators 
labelled by equivalence classes of labels. We review 
briefly the results of I to clarify the procedure. There, 
the quantities considered were transition operators for 
a system of N identical particles. Their matrix elements 
between fully symmetrized channel states gave the 
transition probabilities. Class operators are con­
structed by defining 
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rw =VN/Na 1: RaiaoT<i./lO, 
aEa 

(20) 

where Nb and Na are constants associated with the 
normalization of the channel wavefunctions. Here a o 
and {:lo denote fixed, but arbitrary, representatives of 
the equivalence classes a and b, respectively. These 
are referred to as canonical labels. The transition prob­
ability for physical processes is given by the on-shell 
matrix element 

(21) 

where the states <1>"'0 and <l>so are channel wavefunctions 
satisfying the symmetry internal to the bound clusters 
of the channel, i. e. , 

R", <1>", = <1>"" Rs <l>s = <l>s • (22) 
o 0 0 0 0 0 

The class function in this case was constructed by de­
fining a canonical initial label and symmetrizing on the 
left. This is sufficient due to the well-known property 
that one may symmetrize either the initial state or the 
final state in a many-body scattering matrix element. 25 

It is not necessary to symmetrize on both sides. The 
internal symmetry of the wavefunctions used to calcu­
late matrix elements was retained because of the fact 
that bound states of the proper symmetry are then 
required. 

We will construct class operators for our two general 
classes of scattering equations in a similar way. We 
first demonstrate that Eq. (3) can be shown to give an 
equation for the class operator constructed for the case 
of a general symmetry group. Then we show how the 
physical matrix elements are related to those of the 
class operators in the two cases. Finally we demon­
strate that the connectivity structure of the equation is 
not destroyed in the transition to an equation for the 
class operators. 

The class function we construct is 

for the chain coupling class and 

T ab = L R", P", ",T"'8oVN/Na 
"'Ea 0 0 

(23) 

(24) 

for the channel coupling class. In the channel coupling 
case we take the initial index to be {:lo and suppress it 
and the numerical factor Wb/Ny/2 until the end of the 
discussion. The numerical factors will be chosen to 
yield the proper normalization of the physical matrix 
element. 

Multiplying Eq. (3) by Ra Pa '" and summing on the 
. d . th t· 0 0 III ex a gIves e equa IOn 

T a =[a + L x aB T 6
, 

6 

where we have defined 

[a= L R", P", ",I'" 
",Ea 0 0 

and 

(25) 

(26) 

(27) 

The appropriate permutation operators must be ex-
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tracted from xa8 on the right. This is made possible by 
the following. 

Proposition: 

(28) 

Proof: This property follows directly from the trans­
formation property of K. From the definition of X and 
the transformation property of K, we have 

xa8Pa8, = L Ra Pa aKa~Pfla' 
aEa 0 0 

where for simplicity of notation we have written 

Q =P~~,. 

Now PiJJ, =Pa'8 so 

and 
~ ~ ~ -1 ~ -1 A A -1 

P "'o",P8a , =P",aoQ = (QPOI.C<o) 

= (PQ ",,,, )-l=p", Q",' 
o 0 

Therefore, we have 

xaap8S' = ~ R", P", Q",KQa
s' 

o<Ea 0 0 

As O! runs over all the elements of a, so does QO! for 
any Q. Therefore, the sum may be taken over QO! in­
stead of over O!, and relabelling the dummy index QO! as 
ex gives the result. Q. E. D. 

Corollary: 

(29) 

This result follpws immediately from the proposition 
as all the terms P contained in the Ra sum leave {:l 
invariant. 

These two propositions allow us to make the right in..:. 
dex on the X aB in Eq. (27) canonical by pulling out the 
appropriate permutation operator. The resulting opera­
tor is a class operator and the sum over all {:l may be 
broken up into a sum over b and a sum over {:lEbo Using 
the proposition, Eq. (25) becomes 

T a =[a + LXaBoPs sTs. (30) 
8 0 

By the corollary the internal symmetrizer may be ex­
tracted to give 

Ta=Ia+Lxa8oRa 1>8 /lTs. (31) 
Il 0 0 

Finally, breaking up the sum gives the result 

Ta =1'" + L xabyh (32) 

where we have written 

Kab =Xa8o = ~ R", Po< o<KO<BO 
o<Ea 0 0 

(33) 

for the symmetrized kernel. Equation (32) is an integral 
equation for the class operators as desired. In the 
channel coupling case the right-hand sides of Eqs. (26) 
and (33) require the additional factor (N/Na)\12. 
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We now consider the relation of the physiCal matrix 
elements to the matrix elements of the class operators. 
In the chain coupling case the physical matrix elements 
desired could be the matrix elements of the full T 
operator between some arbitrary initial state, ¢; and a 
set of final noninteracting states of all the particles, ¢o. 
At least one of these states must have the correct 
symmetry. Because our equations (3) were chosen to 
have the T on the right, we have symmetrized from the 
left. We therefore require that the left wavefunction 
have the proper symmetry. The physical matrix element 
is therefore 

(34) 

where25 

(35) 

The state ¢o may be a set of plane waves, for example, 
or a coordinate space state in which each of the parti­
cles is at a particular point. Using (2), the physical 
matrix elements may be written 

T =[nt!n2!" ·nk!J1/2( CPoiRLT" I¢'). (36) 
a 

By properties (13) and (16), the required permutation 
operators may be introduced before the T". We may 
therefore write 

(37) 

Decomposing the sum into a sum over classes, a, and 
a sum over the elements in those classes, O!Ea gives 

T = [n1!'" nkJ1/2( ¢o IRL T'I ¢') (38) 
a 

so 

T = <1>0 IL: T a I ¢'). (39) 
a 

For the channel coupling case the physical matrix 
elements are transition matrix elements. The indices 
of the T operators are partitions, and one takes matrix 
elements between states of the appropriate partition 
Hamiltonians. Physical channels are labelled by class 
indices instead of partitions. The transition matrix 
element between a state of class b and one of class a 
will be 

(40) 

where U is the Ekstein transition operator [see Eq. 
(2.5) of I] and 11)a) and I ;Po) are final and initial states 
of the proper symmetry. Following I, we express both 
final and initial states in terms of symmetrizations of 
canonical states. We therefore set 

I cPo) = IN; R I CPa) (41) o 
and similarly for I ;Pa). The initial state consists of the 
bound clusters of the representative partition i3 0 and 
plane waves for their relative motion. As in I we 
assume that the wavefunctions of the bound clusters in 
both the initial and final states have the proper sym­
metry for each cluster, but have not been symmetrized 
between members of different clusters. This allows 
the straightforward insertion of standard bound state 

1913 J. Math. Phys., Vol. 19, No.9, September 1978 

theories (which have the correct symmetry) into the 
scattering equations. 

The operator T:o may now be expressed in terms of 
matrix elements of the T operator (1) as follows. Using 
the fact that R commutes with U and R2 =R, and in­
serting (41) into (40) gives 

T;o =,jN.Nb(<POI IRUI CPa)' (42) o 0 

Expanding R by Eq. (11) yields 

T:b=,jNaNb 1;1 L: (CPOl olp-1UI¢ao) 
PES 

(43) 

Since the matrix element of V agrees with that of T'b 
on-shell, we may replace T:b by 

(44) 

Using Eq. (22), the definition of Sa' and the fact that 

~ I I ~ t I ~ (¢0I1 = (POI a 0 CPa = (¢0I 0 P OIOI =(CPOI P OIOOl ' o 0 0 
(45) 

we obtain 

Tao = (YNaAV I 5 I) IS a I I: (¢OI IR" POI '" TPOIoao I ¢Jl ). 
"Ea 0 0 0 0 (46) 

It is now only necessary to observe the following: 

Lemma: 

(47) 

This follows very directly from the arguments of Ref. 
25. Assuming the asymptotic states 1 cPa) and 11>0) 
correspond to normalizable wavepackets, we must have 

so 

Na = «¢"'o I R I ¢0I0) )-1. 

Expanding out R by (11) gives 

(cp" IRI¢" )=(1/ISI)L (Q", IPldl",). 
o 0 PE S 0 0 

If we choose wavepackets such that all the clusters are 
well separated, interchanging between different clusters 
gives 0 and within the same cluster gives 1 (assuming 
(<p" 1 ¢" ) = 1). Therefore, we have o 0 

(¢" IRI¢OI)= ISal/lsl =1/Na• o 0 

We therefore have 

Tao =IN;;!N; L: <1>" I TOIBO I <,Qao)' 
"Ea 

(48) 

Introducing the class operator given by (24) the physical 
matrix element is given by 

(49) 

We observe that all the complex counting considered in 
Paper I [including the 6 term of Eq. (2. 35) 1 is obtained 
from the straightforward group theoretic considerations 
of Eq. (47). 

We now consider the connectivity structure of the re­
sulting equations for the class operators, Eq. (32). We 
have the following: 
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Theorem: If the nth power of the operator ~ is com­
pletely connected, then so is the nth power of the opera­
tor Kab. 

Proof: Let us consider the mth power of the operator 
K. The theorem follows immediately from the following. 

Lemma: 

(Km).b == (lid .• R",o P "'0'" (K"')'" 60• 

To prove the lemma, we observe that 

(Km).b ==L (Km-I).cK"" 

(50) 

=6 (/{m-I)ac IRr Pr rW60 (51) 
c rEC 0 0 

by the definition of matrix multiplication and of K [Eq. 
(33)]. We now note that if we have (where j==m - k) 

(52) 

with j> 1, we can write 

U sing the proposition and corollary [Eqs. (28) and (29)] 
gives 

== I (Ki _I) ad.x<l Y (Kk) Y60, 
d,Y 

which by the definition of the operator X [Eq. (27)] 
becomes 

==I(KJ-I)ad L R6 Po oJ(6Y(K'f60 
d, Y 6 Ed 0 0 

(53) 

This equation has the same structure as Eq. (52) with 
k incremented by one. We may therefore induce on k 
beginning with k == 1 [Eq. (51)] and bring the operator 
over to the left until only a single power of K remains. 
The final step follows in a similar manner. Q. E. D. 

We have therefore demonstrated that the symmetriza­
tion (23)- (24) defines class functions for both the 
chain and channel coupling cases, that equations for 
these class operators can be defined [Eq. (32)] with all 
the symmetry carried in the structure of the inhomo­
geneity (26) and the kernel (33), that the phYsical matrix 
elements are given simply in terms of matrix elements 
of the class operators [Eqs. (39) and (49)], and finally 
that the connectivity structure of the unsymmetrized 
equation is maintained by the symmetrization. 

We conclude this section with a few comments about 
the KLT equations. 7.8 As we remarked above, the KLT 
method uses a numerical matrix in the kernel of their 
equations so that, although the KLT equations have the 
structure of (3), neither the kernel nor the resulting T 
operator are label transforming. There are many T 
operators corresponding to different choices of the W 
matrix. These T operators have different off-shell 
continuations, although the exact operators agree on­
shell. The permutation transformation Tae _ PTaep-1 

1914 J. Math. Phys., Vol. 19, No.9, September 1978 

maps one T operator into a T operator corresponding 
to a different coupling scheme. This prevents the appli­
cation of our procedure to this case. An attempt to 
symmetrize these equations was made by Tobocman. 18 

In this work the equations are symmetrized before 
coupling in contrast to our method which symmetrizes 
after the coupled equations have been constructed. 
Tobocman's method does not produce an equation with 
connected kernel. 

IV. APPLICATIONS AND ASSOCIATED 
COMBINATORIAL PROBLEMS 

The results presented in the previous section make 
it straightforward to construct properly symmetrized 
N-particle integral equations once the symmetry group 
of the system is given. Only the basiC combinatorial 
problems26 of ennumerating equivalence classes needs 
to be solved to make the equations ready for practical 
applications. 

In the following we present two specific applications 
in order to show preCisely what problems arise and 
how they are dealt with. We consider first the nuclear 
physiCS example of Z identical protons and N identical 
neutrons described by channel coupling class equations 
employing minimal (two-cluster) coupling. As a second 
example we consider the problem of a homonuclear 
diatomic molecule with 2Z electrons and two identical 
spin zero (boson) nuclei, treated by the Yakubovskii 
equations,3 a chain coupling case. 

For the first example, N identical neutrons and Z 
identical protons, the permutation group of the system 
is isomorphic to 

S ~SNXSZ 

so the order of the group is I S I = N! Z!. We consider a 
formulation in which the indices are tWo-cluster 
partitions. An example of a formulation of this type is 
that of BRS which has a kernel whose first iterate is 
completely connected. 

To construct the physical quanitites needed, one must 
determine the equivalence classes of the labels and the 
number of elements in each equivalence class. The 
number of distinct labels for N + Z distinguishable par­
ticles is known6 to be 2N+Z-I - 1. For the system with 
identical particles, all the distinct physical two-cluster 
partitions may be characterized by a pair of positive 
integers, (n, z), which give the number of neutrons and 
protons in the smaller fragment. Since the number of 
neutrons and protons are both fixed, the second frag­
ment must contain (N - n, Z - z) neutrons and protons, 
respectively. 

A pair of integers, (N, Z), where Nand Z cannot both 
vanish simultaneously, is known in the theory of com­
binatorics as a bipartite number. 27 The equivalence 
classes of the two-cluster partitions correspond pre­
cisely to all the partitions of a bipartite number into 
two bipartite numbers. The number of such partitions 
was given by Macmahon27 in closed form as 

RNz=~N+l)~+l)-ll (54) 

This is therefore the number of equivalence classes 
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and therefore the number of coupled equations in Eq. 
(32) for this example. 

We now must determine the number of elements in 
each equivalence class in order to construct the opera­
tors R" • Given a particular two-cluster partition of 
the for~, (n, z) - (N - n, Z - z), how many distinct parti­
tions are there in the same equivalence class? If one 
applies all the permutations in S, one would obtain NlZ! 
partitions. Not all of them are distinct, however, as 
exchanging protons and/or neutrons in a single cluster 
does not lead to a new partition. We have to divide by 
the number of ways of permuting the protons and neu­
trons in each of the two clusters. This reduces the 
number of elements toN!Z!/(n!(N-n)!z!(Z-z)!) or 
<:)(;). If the two clusters of the partition are identical, 
then the complete interchange of the two clusters does 
not produce a new partition. This requires reducing the 
number of distinct partitions produced by an addition 
factor of two. We therefore obtain 

N,. == N(n. z) == (~)(;) 1 + 5 1 5 
N/2nZ/2z 

(55) 

These numbers fix the normalization of the operators 
R" which will be used in constructing the inhomogeneou, 
terOm by Eq. (26) and the kernel by Eq. (33). This is 
also the number of terms in the C1(~.a summations [Eqs. 
(23) and (24) J. 

Let us now investigate how the Yakubovskii equations 
have to be symmetrized for the case of a diatomic 
homonuclear molecule. The labels for these equations 
are chains of partitions, at=Ja2~a3~'" ~aN_t~aN, where 
aJ represents a partition of the N- particles into j­
clusters and the relation aJ~aj+t means the partition 
aJ+t can be obtained by breaking a single one of the 
clusters of a j • The initial and final partitions, at and aN, 

being unique are usually omitted. 

For distinguishable particles, the number of complete 
(maximal) chains can be ennumerated by elementary 
methods. This can be done because the set of partitions 
forms a semimodular, relatively complemented lattice.2S 

When the symmetry group of the system is applied, the 
set partitions and therefore the set of labels is split up 
into disjoint equivalence classes. The equivalence 
classes of the partitions can still be regarded as a 
partially ordered set, since the ordering of the parti­
tions is preserved by the mapping of each partition into 
its equivalence class. However, the lattice property of 
the set of partitions is in general not preserved. This 

(ddee) 

(d) (dee) (dd)(ee) (de)(de) (e)(dde) 

(d) (d)(ee) (d) (e)(de) (e) (e)(dd) 

~l ____ ~ 
(d)(d) (e)(e) 

FIG. 1. The partition set for a four-body system conSisting of 
two pairs of identical particles. Arrows indicate inclusion. 
A complete maximal chain is a path leading from the top ele­
ment (ddee) to the bottom (d)(d)(e)(e). There are seven such 
distinct chains. 
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TABLE I. Number of coupled integral equations for N", 3, 4, 
and 5 particles in the Yakubovskii (y) and Bencze-Redish-
Sloan (BRS) methods. The labels a, b, e,··· indicate distinct 
species of particles. 

N=3 

aaa aab abc 

Y 1 2 3 
BRS 1 2 3 

N=4 

aaaa aaab aabb aabe abed 

Y 2 5 7 11 18 
BRS 2 3 4 5 7 

N=5 

aaaaa aaaab aaabb aaabe aabbc aabcd abcde 

Y 4 15 26 45 61 105 180 
BRS 2 4 5 7 8 11 15 

hinders one considerably in trying to find a closed form 
expression for the number of equivalence classes of 
maximal chains. The problem is equivalent to a cur­
rently unsolved problem in graph theory; however, an 
algorithm can be given for ennumerating the number of 
equivalence classes of chains without explicitly sym­
metrizing the original equations. The explicit sym­
metrization procedure has been used in all previously 
considered examples, viz., the works of Kharchenko 
and Kuzmichev14 and that of Roy-Choudhury, et al. 29 

Under the symmetrization group, each partition will 
map into a multipartite number. Therefore, each chain 
will map into a chain of multipartite numbers. As a 
specifiC example we consider the system D2 consisting 
of two deuterons and two electrons, labelled 1 =d, 2 =d, 
3 = e, and 4 == e. All the possible distinct partitions are 
indicated in Fig. 1 with the possible inclusions shown 
by arrows. One can easily read off from this diagram 
that the number of maximal chains is seven. The 
number of coupled Yakubovskii equations for this sys­
tem will therefore be seven. The kernels and inhomo­
geneous terms for the equations coupling the operators 
labelled by these chains can easily be constructed once 
the subgroups for each chain are determined. The 
number of Yakubovskii and BRS equations for the 
various cases of different numbers of identical particles 
in the three-, four- and five-body problem are given in 
Table 1. 

To be specific, the full symmetry group is generated 
by the operators P12 (interchange of the deuterons) and 
P 34 (interchange of the electrons). Taking into account 
the fact that the deuterons are bosons and the electrons 
are fermions yields the full symmetrizer 

R = HI +P'2 - P 34 - P I2 P 34 ). 

Consider the chain a == (dd)(eeP(d)(d)(ee). A canonical 
chain for this equivalence class is the chain (lI 0 

== (12)(34)~(1)(2)(34). The full symmetry group leaves 
this chain invariant. Therefore. we construct the opera­
tor 

ROI. ==R. 
° 
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2 3 4 

FIG. 2. Tree representations of the canonical chains in the 
four-body problem ddee. The chains are read off from the 
tree by following the successive connec~ions down from the 
top of the tree. Particles 1 and 2 are type d and 3 and 4 are 
type e. The dotted boxes indicate parts of the tree which are l 
invariant under an element of the symmetry group. 

There is only a single term in the et sum in Eqs. (23), 
(26), and (33). For the chain b = (d)(dee)::) (d)(d)(ee) a 
canonical chain is f3 0 = (1)(234)::)(1)(2)(34). Only the 
group elements 1 and P34 leave this chain invariant. 
Therefore, we have 

Ra = E(1 - P 34 ). o 
There are two chains in this equivalence class, f3 o, and 
the chain (2)(134)::J(1)(2)(34). There will therefore be 
two elements in the sums f3Eb. 

In general, each chain can be associated with a tree. 
The trees for the chains Cl!o and f3 0 in the above example 
are shown in Fig. 2. The invariance subgroup of a 
particular chain is determined by the number of in­
distinguishable particles which are connected directly 
together rather than being joined to a cluster. The in­
ternal symmetry operator for each chain must be de­
termined by considering the structure of the specific 
chain. 

Upon the construction of these operators, the equa­
tions coupling the symmetrized operators, (32), may 
be written down directly for any case without the need 
of beginning with the original equations (3). 

V. CONCLUSIONS 

The treatment of identical particles in N-particle 
scattering gives rise to nontrivial mathematical prob­
lems. In this paper we demostrate that a general alge­
braic treatment can be developed for a large class of 
N-particle scattering theories. This treatment relies 
on the properties of the permutation group of the sys­
tem. These theories include channel coupling equations 
such as those of BRS or Chandler and Gibson (but ex­
plicitly excluding theories of KL T type) and chain 
coupling equations such as those of Rosenberg, 
Yakubovskii, and 'Narodestkii and Yakubovskii. 

There are two features of basic importance which 
make the general algebraic treatment possible. First, 
in all the N-particle theories the quantities to be de­
termined are labelled by partitions or (incomplete or 
complete) chains of partitions of the N-particle system. 
Consequently, the number of coupled equations is de­
termined by the way of labelling rather than the treat­
ment of N-body dynamics. Second, the permutation 
group of the system generates an equivalence relation 
on the set of labels and accordingly splits it into dis-
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joint equivalence classes. Only the equivalence classes 
and operator valued functions of these classes have 
physical meaning. This statement is just an abstract 
formulation of the property that due to the indistinguish­
ability of some of the particles the amplitudes of the 
physical processes can be expressed as coherent sums 
of "direct" and "exchange" processes. In our general 
algebraic treatment we construct operators which are 
sums of permutation operators acting on the scattering 
operators of the relevant theory. These class operators 
given by Eqs. (23) and (24) are labelled by the equiva­
lence classes of the set of original labels. If the in­
homogeneous term and the kernel of the relevant set 
of N-particle equations satisfy certain general condi­
tions, i. e., if they are label transforming, it follows 
that the N-particle equations can be reformulated in 
terms of the class operator, with a simultaneous re­
duction in the number of coupled equations. Further­
more, the physical matrix elements are expressed in 
terms of matrix elements of the class operators. The 
entire burden of the symmetry is carried by the sym­
metrization of the inhomogeneous term and the kernel. 
We also demonstrate that the connectivity properties of 
the kernel are passed on to the symmetrized equation. 

The most remarkable fact exhibited by the considera­
tions of this paper is that the treatment of identical 
particles, i. e., exchange effects, is actually indepen­
dent of the N-particle dynamics for a large class of N­
particle scattering theories. This is the consequence of 
the nondynamical nature of the permutation symmetry 
of the system. 
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Energy-momentum tensor symmetries and concomitant 
conservation laws. I. Einstein-massless-scalar (meson) field 
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Symmetries of energy-momentum tensors :T in a Riemannian space-time are defined by infinitesimal 
mappings Xi = Xi +~i(x)8a where the mapping vector ~i is determined by the symmetry condition 
2E(gwI23')=0, (gWI23'is a relative tensor of weight w, g= absolute value of the metrical determinant, 
and.st'f is the Lie derivative with respect to the vector ~i). The existence of such symmetry vectors ~i leads 
to concomitant conservation laws in the form of conserved vector currents Ji for both special and general 
relativity. The currents Ji will be explicit functions of the energy momentum tensor :T and the symmetry 
vector ~i. The symmetries and conservation laws so obtained will in general differ from the familiar 
Trautman formulation. The theory is applied to obtain symmetries and conserved currents for a class of 
conformally flat solutions of the Einstein-massless-scalar (meson) field equations. 

I. INTRODUCTION 

Let g w/2 .'T be a relative tensor of weight w where .'T is 
an absolute tensor of valence (p,q) (p,q'>O), in a Rieman­
nian space-time V, with metric gij ( signature - 2 ). An in­
finitesimal mapping 

xi =x i +S i (x)8a (1.1) 

is said to define a symmetry of the relative tensor if 

if? s(g w12.'T) =0, 

g=absolute value detgij' (1.2) 

where if? s ( also written as if? for brevity) is the Lie deriva­
tive l with respect to the vector S i of ( 1.1 ). Such vectors S i 
which satisfy Eq. ( 1.2 ) are called symmetry vectors, and the 
corresponding mappings Eq. ( 1.1 ) are called symmetry 
mappings. 

In this paper we shall consider symmetries of the type 
( 1.2) where the absolute tensor.'T is taken to be an 
energy-momentum tensor. We shall show that such symme­
tries lead to conservation laws in the form of conserved vec­
tor currents for both special and general relativity. The func­
tional structure of the conserved currents will be explicit 
functions of the energy-momentum tensor and the symme­
try vector. [See for example Eq. ( 2.SD ).] These symmetries 
are of additional interest since they are interrelated with the 
kinematical properties of the matter and! or fields associated 
with the energy-momentum tensor. 

For the case of general relativity these symmetries may 
be given an alternative formulation and!or interpretation in 
terms of the metrical quantities of the left side of the Einstein 
field equations. An analysis of these symmetries based on 
such an alternative formulation will be included in a later 
paper which will also include a study of symmetries defined 
by Eq. (1.2) where .'T need not be an energy-momentum 
tensor.2 For the case of special relativity the abovementioned 
alternative formulation will of course not be present. 

The forms of the conservation laws associated with the 
symmetries Eq. ( 1.2) will be similar to those generalizations 
of the Trautman3 conservation law developed by Katzin-Le-

vine-Davis [Ref. 2(a)] and Collinson.' Due to the differ­
ences in the symmetries defined by Eq. (1.2) and those used 
by the abovementioned writers the actual conserved vector 
currents associated with Eq. ( 1.2) will in general differ from 
those previously obtained by these writers. We give below a 
brief discussion of the abovementioned earlier work insofar 
as it relates to our present work. 

From Trautman's work3 it is well known that if a Rie­
mannian space-time V, admits a Killing vector Si (motion) 
defined byl 

if? g ij S iJ + S }:i = 0, (1.3 ) 

then there exists a conservation law of the form 

(1.4 ) 

wheres j =gjiS i' and where Tj( gjkTik) is an energy-mo­
mentum tensor for which 

(1.5 ) 

T~=O. (1.6) 

It also follows from Trautman's work that if a space-time V, 
admits a conformal motion defined by 

if?g ij = 2a(x)g ij' (1.7) 

then a conservation law of the form ( 1.4) will exist based 
upon the symmetry vector Si which satisfies Eq. (1.7) pro­
vided T =0, where 

( 1.8) 

The generalization of Trautman's work by Katzin, 
Levine, and Davis [Ref. 2 (a)] showed if a Riemannian 
space-time of general relativity with scalar curvature R = 0 
admitted a symmetry (which they called a Ricci collinea­
tion)6 defined by a vector SJ which satisfied' 

if?Rij=O, (1.9) 

then it followed that the space-time admitted the vanishing 
vector divergence 

( 1.10) 
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By use of the Einstein field equations 

Rj-!Rt5j=-Tj (1.11) 

(withR =Oand hence T =0) it then followed that a conser­
vation law of the Trautman form Eq. (1.4) again resulted 
but based upon the Ricci collineation symmetry vector Si 
defined by Eq. (1.9). 

Collinson4 pointed out that the Katzin-Levine-Davis 
equation (1.10) based upon Eq. (1.9) was also valid for 
R =1=0. From Eq. (1.11) expressed in the form 

Rj=(TJ-!Tt5j) ( 1.12) 

it then followed that ( 1.10) could be expressed in the form' 

[g1l2(Tj-!Tc5j)sjL=0. (1.13) 

It also follows by means of the field equations (1.11 ) 
expressed in the form (1.12) that the symmetry condition 
Eq. (1.9) implies that the energy-momentum tensor satis­
fies the symmetry condition 

2'( T ij -!Tg ij )=0. (1.14) 

It is easily shown by contraction of Eq. (1.14) with gij and 
use of Eq. (1.5) and ( 1.6) that the associated conservation 
law Eq. (1.13) is again obtained (as would be expected). 

By means of the Bianchi identity 

R j=2Rj;i 

and the expansion of 2' Rij it follows that 

2(R jSj);i gij 2' R ij' 

(1.15 ) 

(1.16) 

From Eq. ( 1.16) it is immediate that the existence of a Ricci 
collineation Eq. (1.9) is a sufficient but not a necessary con­
dition for the existence of a conservation law of the form 
( 1.13).8 

By means of the identity Eq. (A 10) of Appendix A with 
S ij =R ij and (1.16) it follows that 

2(R jSj);i gij 2' R ij=_g-1/2g ij2' [gl/2(R ij -!Rgij)]. 
( 1.17) 

From Eq. (1.17) we observe that an alternative to the Ricci 
collineation Eq. (1.9) as a sufficient condition to obtain the 
vanishing divergence Eq. (1.10) [and hence to obtain a con­
servation law of the form (1.13)] is the symmetry condition 

2' [gll2(R ij - !Rg ij)] = O. (1.18) 

By means of the Einstein field equations ( 1.11) the symme­
try defined by Eq. (1.18) implies 

( 1.19) 

which is of the form ( 1.2). We are thus led (as mentioned in 
the beginning of this section) to the study of symmetries of 
this form. 

In Sec. II we formulate three types of symmetry condi­
tions of the form ( 1.2) based upon covariant ( Tij)' contra­
variant ( T ij ), and mixed ( T j ) forms, respectively, of the 
energy-momentum tensor. Although T ij' Tij, and Tj may 
each be considered as representations of the same physical 
energy-momentum tensor, the respective symmetry condi­
tions based on these three forms of the tensor do not in gener-
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al define equivalent symmetry mappings. For each type of 
symmetry condition of the form (1.2) we obtain for the two 
cases weight W= 1 or 2'T =0 (w arbitrary) a conservation 
law (in the form of a conserved current) concomitant with 
the existence of a symmetry mapping. For general weight w 
we also show that each type of symmetry mapping leads to a 
conservation law involving an additional vector Ai defined 
by 2' sT =A ~i' Such vectors Ai will always exist (locally). 

For conformally related space-times a necessary and 
sufficient condition is obtained in order that conserved cur­
rents in the respective spaces be conformally related. 

In Sec. III we apply the theory of Sec. II to a class of 
conform ally flat solutions of the Einstein massless-scalar 
( meson) field equations for which the energy-momentum 

tensor has the form T ij =t/! .it/! j -!Ag ij' A_gijt/! ,it/! j 
(where t/!is a scalar field satisfyingg ij t/!;ij =0. We determine 
the symmetries which satisfy 2' s( g w12T ij )=0 and obtain 
the concomitant conserved vector currents which in general 
are not of the Trautman form. For the case A =0 (which 
implies t/! i g ij t/! j is a null vector ), the general solution for 
the symmetry vector Si is found along with the concomitant 
conserved current vectors. It is shown that the conserved 
current vectors J i are null vectors which are parallel dis­
placed with respect to the null geodesic congruences defined 
by t/! i , and that the J i themselves define null geodesic con­
gruences. For the case A =1=0 several types of symmetry solu­
tions are obtained depending on the choice of parameters 
which occur in the metric g ij and the scalar field t/! and on the 
assumed value of the weight w in the symmetry condition. Of 
particular interest when W= 1 is a ten-parameter group of 
symmetries GIO which contains a seven-parameter subgroup 
of conformal motions which in turn contains a six-parameter 
subgroup of motions. The conserved current vectors con­
comitant with this GIO group of symmetries are shown to be 
spacelike and also have the interesting property of being con­
served currents in the Minkowski space-time which is con­
formally related to the underlying conformally flat 
space-time. In a suitably chosen basis of this GIO it is shown 
that the conserved currents concomitant with the three non­
conformal symmetries have a conformal scale relationship 
to the conserved currents associated with three of the motion 
symmetries of the GIO. 

II. CONSERVATION LAWS BASED ON 
SYMMETRIES OF THE ENERGY-MOMENTUM 
TENSOR 

Each of the three associated forms of the energy-mo­
mentum tensor T ij' Pi, Tj when used in (1.2) for Y will 
determine a symmetry equation. We write these in the re­
spective forms (for generality we assume a Riemannian 
space-time) 

2' D(g"/2Tij)=0, (2.1D) 

(2.1U) 

(2.1M) 

We denote by sh, S~, and s~ the three symmetry vectors 
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associated with the three symmetry equations (2.1 D ), 
(2.1 U), (2.1 M) , respectively. As mentioned in the previous 
section these vectors will in general be distinct. The notation 
2' D' for example, indicates Lie differentiation with respect 
to the vector S b' 

We now show how to obtain conservation laws, in the 
form of conserved currents, which are associated with the 
existence of each of the abovementioned symmetry vectors. 
With this in mind, we consider first (2.1D) which expands 
tol 

2'DTij+WS'D;kTij=O. (2.2D) 

Further expansion of (2.2D) gives 

T ij;d'D + T kj5'D;i + T ik 5'D;j +W5'D;k T ij =0. (2.3D) 

Contraction of (2.3D) withgij and use ofEqs (1.5), 
(1.6), and (1.8) leads to 

2[ (Tj + ~ T8j )5~ l; -(w-l)T.i5~ =0. (2.4D) 

In a similar manner we obtain from (2.1D) the 
condition 

2 [( Tj - ~ T8; )sju li +( w-l )T,i5~=0. (2.4U) 

By inspection of Eqs. (2.4D) and (2.4U) we may state 
the following theorem 

Theorem 2.1 D,U: With respect to a symmetric 
energy-momentum tensor pi (Pi J = 0, T g ij T i) of a 
Riemannian space-time: 

( D ) If there exists an infinitesimal symmetry mapping 
Xi =x; +5 ~(x )8a such that ,51' D(g wI2T ij )=0, then 
there exists a concomitant conservation law 

[(Tj+~wT8j)5jD ];i =0, (2.5D) 

provided w = 1 or !t' DT = ° (w arbitrary). 

( U) If there exists an infinitesimal symmetry mapping 
Xi =Xi +5~(x)8a such that!t' u(g w12Tij )=0, then 
there exists a concomitant conservation law 

[( Tj -1wT8J)sJu ];i =0, (2.5U) 

provided W= 1 or !t' uT=O ( w arbitrary). 

Remark 1: Ifin (2.4D) the term (w-l)T.i5~=1=0, then 
since (locally) there always exist vectors A D (x) such that 

(2.6D) 

we have concomitant with the symmetry (2.1 D) the conser­
vation law 

[ (r+~T8i)l;-j _(w-l)Ai ] .. =0. 
J 2 J ~ D 2 D,I 

(2.7D) 

In a like manner if in Eq. (2.4U) the term 
(w-l) T.J iu=1=O we have concomitant with the symmetry 
(2.1 U) the conservation law 

[( 
. w 'J;: ')1;- (w-l) .] Tj-TTuJ :,Ju +--

2
-AIU ;;=0. (2.7Ul 
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Note that in Eqs. (2.7D) and (2.7U) the vectors A b andA ~ 
are not unique. 

Remark 2: Note that if T =0 the conservation laws 
(2.5D) and (2.5U) reduce to the Trautman form (1.4). 

Remark 3: Note that the conservation law (2.5U) 
based upon the symmetry condition Eq. (2.1 U) with w = 1 is 
of the same form as the conservation law ( 1.13) based upon 
the existence of the Ricci collineation ( 1.9) [if use be made of 
the Einstein field equations in the form (1.12)]. 

Remark 4: Note the conservation law (2.5D) concomi­
tant with the symmetry (2.ID) with W= 1 differs in form 
from ( 1.13) [based upon ( 1. 9) or equivalently9 ( 1.14)] and 
also from (2.5U) [based upon (2.1U) with w= lor equiv­
alently9 0.18)]. 

F or the case of general relativity it is immediate that the 
symmetry (2.1 D) w = 1 can be given the equivalent form 

(2.8D) 

and the associated conservation law (2.5D) may expressed 
in the form 

(2.9D) 

This latter equation should be compared with ( 1.10 ) [which 
holds for both the symmetry vectors defined by (1.9) and 
(2.IU) with w=l). 

The following identity is derived in Appendix B, 

Y' (g1l2R) (g1/2R15i)J -!g ij 2' [gI/2(R ij -!Rg ij)]' 

(2.10) 

It follows by use of (2.10) that with respect to a symmetry 
vector 5 ~ [satisfying (2.8D)] the Lie derivative of the La­
grange density of the gravitational field is represented as a 
divergence in the form 

l' D(g1l2R )=(gI12R{5 D);j =(g1/2R{5D);J' (2.11D) 

We finally consider the case in which the symmetry 
mapping ( 1.1) is defined by (2.1 M). Expansion of (2.1 M) 
followed by contraction on i and j leads to 

(2.12M) 

By inspection of (2.12M) we may state the following 
theorem. 

Theorem 2.2M: If a Riemannian space-time admits an 
infinitesimal symmetry mapping Xi =x i +S:W(x )8a such 
that .,Y'M ( g wI2 T j ) = 0, where T; is the mixed form of the 
energy-momentum tensor, then there exists a concomitant 
conservation law 

(2.13M) 

provided W= 1 or !t'MT=O (w=1=O but otherwise arbitrary). 

Remark 5: Ifin (2.12M) the term (w-l) T,i5~=1=0, 
then in a manner similar to that discussed in Remark 1 fol­
lowing Theorem 2,10, U we may obtain the conservation 
law 

(wTS i'>[ -( w-l )A :W);i =0, 

concomitant with the symmetry (2.1 M), 10 
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For the case of general relativity it is easily shown by 
means of the Einstein field equations that the symmetry con­
ditions (Eqs. 2.10,U,M) and the equation 2"T=O are al­
ways satisfied by any motion vector admitted by the 
space-time. It follows from Theorems 2.10,U and 2.2M 
that the conservation laws (2.5D,U) and (2.13M) hold for 
the motion symmetry vectors. Hence (2.13M) with either 
(2.5D) or (2.5U) give Trautman's conservation law ( 1.4) 
for motion symmetries. Note that these remarks imply that a 
motion symmetry vector leads to the existence of two (in 
general) conservation laws (TjSj);i =0, (TS'Ji =0. 

We now prove a theorem concerning conserved current 
vectors in conformally related space-times. While this theo­
rem is of interest in itself it will have application in the exam­
ple considered in the next section. Consider then a 
space-time V. with ~etricgij{ x) which is conformally relat­
ed to a space-time V. with metric g ij( x) in that 

g ij( x )=e 2(7 g ij( x), 

(2.15 ) 

Let Ji(X) be a conserved current in the V. in that 

(2.16 ) 

In V. define a vector Ji (x) conformally related to Ji(x) by 

Ji(x)=e 2(7 Ji(x). (2.17) 

We have by use of (2.15) and (2.17) that ll 

Jfi g-II2(gII2Ji),i =e 2(7 [J~i + 60",iJi]. (2.18 ) 

By inspection of (2.18) we may state the following theorem. 

Theorem 2.3: Given two conformally related 
Riemannian space-times V. and V. with respective metrics 
giJ{X) and g ij(x) =e 2(7 (x)g i/X) such that V. admits the con­
served current J i (x) in that J ii = 0, then a necessary and 
sufficient condition that V. admit the conformally related 
conserved currentJi(x)=e 217 Ji(x) in thatJf; =0 is O",iJi =0. 

Remark: The condition 0" ,iJ i = 0 implies the current 
vector Ji is perpendicular to the normal to the hypersurface 
0"= constant. 

III. APPLICATION TO CONFORMALL Y FLAT 
SOLUTIONS OF EINSTEIN MASSLESS-SCALAR 
(MESON) FIELD EQUATIONS 

As an application of the theory of Sec. II we shall deter­
mine symmetries and concomitant conserved current vec­
tors for a class of conformally flat solutions of the Einstein 
massless-scalar (meson) field equations. Based on the ener­
gy-momentum tensor 

( 3.1 ) 

for a massless scalar field ¢ Giirses l2 obtained solutions of 
the Einstein field equations ( 1.11 ) assuming the space-time 
to be conformally flat. For our application we consider one 
class of Giirses' solutions where the conformally flat 
space-time is given by 

1921 
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(3.2) 

where, 

1 . 
- N +ao, N a iX':;iO, ai,ao=constants. (3.3) 
U2 

For the metric (3.2) the scalar field ¢ is given bylJ 

¢=.8oln(a ix
i +ao), .8o=constant=;t::O (3.4) 

and satisfies the scalar wave equation (massless Klein-Gor­
don equation) 

gij¢ ;ij=¢~i =0, 

¢i gij¢J' 

From Eqs. (3.1 )-( 3.4) we may write 

A =,82oB oU\ B o=I e ia 7, 
and 

(3.5 ) 

(3.6) 

(3.7) 

We shall now determine symmetry vectors Si which satisfy 
(2.10) [2" g(g w/2T ij)=O] where T ij is given by (3.7). 
From Eqs. (2.30) and (3.7) the necessary and sufficient 
condition for the symmetry mapping may be written in the 
form 

AimS':; +A mjS'J +A ijY =0, 

where 

Y=WS:;:' -2U2Z, 

( 3.8) 

( 3.9a) 

(3.9b) 

With reference to (3.1) and (3.6) we consider the two cases 
(A) A =0 (til is a null vector), (B) A=;t::O (til is not a null 
vector). 

A. The case A=O 

From (3.6) and (3.7) we find 

Bo= Ie ia7=0, (3.10 ) 

and 

(3.11) 

For this case A =0, it follows from (3.3) and ( 3.10) that at 
least two of the a i are not zero. By use of( 3.9 ) and ( 3.11 ) in 
( 3.8) we obtain 

aiZ,i+ajZ.i+a iajY =0. (3.12) 

If we put i = j in (3.12) the result may be expressed as 

2Z,i+aiY=0. (3.13) 

If Z,Jrom (3.13) is used in (3.12) the result is identically 
zero. This implies that (3.13) is necessary and sufficient for 
the symmetry mapping. 
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From (3.13) it follows that 

ajZoi-aiZ;j=O. (3.14) 

The solution to (3.14) isZ =Z (N), whereZ (N) is arbitrary 
and N is given by (3.3). Hencefrom (3.9) we have 

Z=amSm=Z(N). 

Byuseof(3.15) we find (3.13) reducesto 14 

Y+2Z'=0. 

(3.15) 

(3.16 ) 

By means of (3.2), (3.3),and (3.9) in (3.16) we obtain 

ws:;;' +2(w-l)U2Z +2Z'=0. (3.17) 

Equations (3.15) and (3.17) are necessary and sufficient 
conditions which the symmetry vector Si must satisfy. We 
proceed with their solution. 

There is no loss of generality in assuming 

aj= -1, aZ=al=O, a 4= 1, N =X4_XI, 

1 
- N+ao• 
U2 

Hence from (3.15) we have 

S4-SI=Z(N), 

and (3.17) takes theform 

wS~2=F, 

(w+2)Z' +2(w-l)U'Z]. 

(3.18 ) 

(3.19 ) 

(3.20) 

Subcase w*O: For the subcase wc.;;t=O, the general solu­
tion of (3.15) and (3.17) for the symmetry vector Si may be 
written in the form 

Sl=Sl(XI, X2, Xl, X4), S4=SI+Z(N) (W*O), (3.21) 

where Sl, S3, G, and Z are arbitrary functions of their indicat­
ed arguments. 

Subcase w=O: For the subcase" w=O, (3.17) reduces 
to 

( 3.22) 

From the form of U given in (3.18), the solution to (3.22) is 

Z(N)=co(N +ao), co=arbitrary constant (w=O). 

(3.23 ) 

For this case the general solution for Si is expressible as 
follows 
S' ,S' ,S3 arbitrary functions of Xl, X2, x 3, x" 

(3.24) 

For the case A =0 we have from (3.1) that 1// defines a 
null vector from which it follows that ¢ ~k ¢ k = ° and hence 
tfJ defines a null geodesic congruence. It also follows from 

1922 J. Math. Phys., Vol. 19, No.9, September 1978 

(3.1) that T=O, and hence the conservation law (2.5D) 
takes the Trautman form '6 (TJSj);i =0. Thus when A =0 
the conserved current vectors for both w = ° and w*O sub­
cases has the form 

(3.25 ) 

When w=O (in which case the symmetry vector sj de­
fines a Ricci collineation) we obtain from Eqs. ( 3.18 ), 
( 3.23 ), and ( 3.25 ) that p =/:1oCo and the conservation law 
J;i =0 reduces to the Klein-Gordon equation (3.5). 

When w*O, it follows from Eqs. (3.2)-(3.4), (3.18), 
and (3.25) that the scalar factor p and gij appearing in the 
conserved current Ji are functions of N which is essentially 
the phase of the scalar wave ¢ and hence the current Ji is a 
function of the phase of the wave. 

Since ¢ i is a null vector it follows from ( 3.25 ) that the 
conserved current J i is also a null vector. From ¢;k ¢ k = 0 

andJ;; =( ¢ ;jSi¢i)" =¢ ;Ji5
j
¢i+5j;i¢j¢i +¢ ;j5i ¢;i =0 

it follows that 

(3.26) 

By use of the Klein-Gordon equation in the form g jk ¢ ;Jk = ° 
we have from (3.26) that the conserved null vector is paral­
lel displaced with respect to the null geodesic congruence 
defined by ¢i. Alternatively with the Klein-Gordon equa­
tion expressed in the form ¢ ~k = 0 we may interpret this par­
allel displacement of the conserved current Ji as a conse­
quence of the kinematical property that the congruence 
defined by ¢i has vanishing expansion 8=W ~k .17 It also fol­
lows from Eqs. (3.25), (3.26) that 

J:kJ" =0. (3.27 ) 

Hence Ji also defines a null geodesic congruence. 

B. The case A*O and at least two «#0 
We consider first the case when in the expression for N 

of (3.3) at least two of the a,4=O. In this case there is no loss 
of generality in assuming aZ=al=O. From (3.7) we obtain 

A I\=A 44=tp6(ar+aV, 

A 22=Al1=tp6(a~-all 

A 14=1JI'oa1a 4, other Aij=O. 

We thus take 

where from Eq. (3.6) we must have a 2,-a'I*0. 

(3.28 ) 

(3.29 ) 

Subscase w = 1: For this choice of N it can be shown that 
if w = 1 a particular solution of the symmetry equation 
(2.1D) in which the symmetry vector is assumed to be of the 
form 5 i =5 i (x i, x 4

) is given by 

Si =b i -ae;(A ilX' +A i4X'), 

bi,a = arbitrary constants. (3.30) 

This leads to a five-parameter group of symmetries 
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Gs=[P" P 2, P 3, P 4, Q], where 

p e =a e ,s(q=8b 

c=1, ... ,4, 

siQ)= -e i(A iIX4 + A i4X'). 

( 3.31) 

This Gs contains a G4 = [P" P2, P3, P4] subgroup of conformal 
motions which contains a G2[P2, P3] subgroup of motions. 

Forthecasew= 1, the conservation law (2.5D) leads to 
conserved currents Ji of the form 

(3.32) 

The five conserved current vectors concomitant with the five 
symmetry vectors Si of (3.31) are obtained from (3.32). The 
currents are proportional to the phase of the 1/1 waves and 
take the form 

Jb= U 6e iA ie' C = 1, ... ,4, (3.33) 
JiQ)=wnU6[x'a,aia r-a ~)-x4a ~(a r+2a ~),O,O, 

x'ar(a~-2aD-x4a,aiar-aV], (3.34) 

where U6=(a,x'+a~4+ao)-3. [See (3.3) and (3.29).] 

Remark: It should be noted that the space-time defined 
by the metric (3.2), (3.3), and (3.29) also admits the mo­
tion symmetry defined by Si = [0,x3, - x 2 ,0]. This motion vec­
tor is a solution of the symmetry equation .!t's(g wl2 T ij) = 0, 
w arbitrary. (Refer to the last paragraph of Sec. 2.) 

C. The case A=F0 and three ai=O 

We continue with the caseA=FO. We now take 
a, =a2 =a3 =0, a 4 = 1 and assume w is arbitrary. For this 
choice we have from Eq. (3.2) and (3.3) 

1 
-=x4+ao,g ·.=e·8 .. (x4+ao) U2 IJ I l] , 

e, =e2=e3, e4= 1. (3.35 ) 

From (3.6) we noteB o= 1 andA=!f!oU6. For the above 
choice of a's we also find from (3.7) that 

Aij=Y35Dij' 

(3.36) 

The symmetry condition (3.8) now takes the form 

where [refer to (3.9)] 

Y=ws;;:' -2UZs4, 

Z=S4. 

Ifi=Fj (3.37) reduces to 

Sj+S~i=O, i=Fj. 

This equation has the known solution '8 

Si =b i +mJxj +rx i -!a is, m J 
= -m{, ao,a i' b i' m 5 = constants, 
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(3.37) 

( 3.38a) 

(3.38b) 

(3.39) 

(3.40 ) 

where 

- + m S-" ( j)2 r=ao a mX , = £.. x . (3.41) 

If i=j in (3.37) and use be made of (3.40) and (3.41) we 
obtain 

Y +2r=0. (3.42 ) 

From (3.35), (3.38), (3.40), and (3.41) used in (3.42) we 
obtain 

x (w-l)m4
m x m +ao(2w+ l)ao 

+b 4(w-1)=0. (3.43) 

Equation (3.43) must hold identically in the Xi. This implies 

wa, =0, wa2=0, wa3 =0, (w-l)a4=0, (5w+ l)a4=0, 
(3.44) 

(2w+ l)aoG4 + 3wao=0, (2w+ l)aoGp+(w-l)m ~ =0, 
f3 = 1,2,3, (3.45) 

(2w+ 1)aoGo+(w-1)b 4=0. (3.46 ) 

We consider the three cases w= 1, w=O, W=FO,l. 

Subcase W= 1: In this case (3.44)-(3.46) imply 
ao=a,=a2=a3 =a4=0. Hence the symmetry vector Si of 
(3.40) reduces to 

Si =b i +mjxj, 

mj=-m{, (w=I), (3.47) 

where bi and m j are then arbitrary constants. It can be shown 
that the symmetry vector (3.47) generates a ten-parameter 
group whose generating vectors are 

s~A)=8~, 

S~AB)=8~XA -8~XB, 

A ,B = 1, ... ,4. (3.48) 

The group symbols are then given by'7 PAS ~ A) a i 
=aA'SAB S~AB)ai=xAaB -x BaA' The group maybe 
represen ted in the form G 10 = [P A'S AB ]. It is recognized 
from (3.47) that this GIO is a group of motions in a four­
dimensional Euclidean space. This GIO is also a group of con­
formal motions in the conformally flat space defined by 
( 3.35) but with all ei = + 1. In the actualspace-time ( 3.35 ) 
under consideration this GIO is not a group of conformal mo­
tions since the three symbols Sa4' a= 1,2,3 do not define 
conformal motions for the metric ( 3.35 ). However in the 
actual space-time ( 3.35 ) there exists a seven-parameter 
conformal motion subgroup of this GIO• This G, is represent­
ed by [P A' SaP], A = 1, ... ,4, a, f3= 1,2,3. This G7 in turn 
contains a subgroup of motions G6 represented by 
[Pa,SaP]' 

Corresponding to each of the vectors Si of the lO-pa­
rameter group of symmetries defined by (3.48) we obtain 
[from (2.5D) with W= 1] ten conserved currentsJi of the 
form (3.32). These ten current vectors can be arranged into 
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two sets. The current vectors corresponding to S ~ = 0 ~ of 
(3.48) are obtained from (3.32), (3.35), and (3.36) in the 
form 

(3.49) 

Associated with the six symmetry vectors S~AB) of (3.48) we 
have the corresponding current vectors 

J~AB)=!P5U6(e i-1)(okxA -OAX B). (3.50) 

Note from (3.49) that the conservation law corre­
sponding to the conformal motion symmetry S~4)=0~ is 
trivial in that J ~4)-0. Since e4 = 1, the fourth component 
]4=0 for each of the nine remaining nontrivial current vec­
tors J~a),J~AB)' a= 1,2,3, A ,B = 1, ... ,4, given by (3.49), 
(3.50). It thus follows that these nine conserved currents are 
each spacelike. For convenience we give the expanded form 
of these nine conserved currents associated with the symme­
try 2" S(gIl2T ij) =0 

J~l)= W[ 1,0,0,0], Jh)= W[O,l,O,o], 

Jb)= W [0,0, 1,0], (3.51) 

J~I2)= W[ _x2
, xI, 0,0], J~13)= W[ _X\0,x1,0], 

Jb)= W[0,-x3
, x 2,0], 

J~a4)= -x4J~a)' a= 1,2,3, 

(3.52) 

(3.53 ) 

where W -fJ2oU 6
• 

From the discussion following Eq. (3.48) it is seen that 
the six conserved currentsJ~a)' J(aP)' a = 1,2,3 given by Eqs. 
(3.51), (3.52) are concomitant with the six motion symme­
tries S ~a)' S ~aP) (which comprise the G 6 = [P a' SaP])' How­
ever the remaining three conserved vectors J~a4) of (3.53) 
are concomitant with the three nonconformal motion sym­
metries S ~a4)' It is of particular interest to determine further 
information about the currents which arise from the non­
comformal motion symmetries 

With this objective in mind we consider the following 
change in basis ofthe group G 10: S *~A) = S ~A)' S *~aP) = S ~ap), 
S*ia4)=aoS~a)-sia4)' It is evident by inspection that in the 
new basis the S *ia)' s *~aP) define the same G 6 of motions, 
and the S *~a4) is a noncomformal motion vector. In the new 
basis the associated currents J *i are given by 

J*iA)=J~A)' 

J *iap) =J iaP)' 

J *i _ 1 Ji 
(a4) ---c;; (a)' (3.54 ) 

where the J* ; a4) are now the conserved currents concomi­
tant with the nonconformal symmetries. The last equation of 
( 3.54) may be interpreted as a conformal relation between 
the conserved currents J* ~ a4) and J ~ a) in the two confor­
mally related spaced C4 [defined by ( 3.35 )] and the associat­
ed Minkowski space M4 ( with metric e iO ij ). To see this we 
note that may consider J ~ a) to be conserved currents in M4 
in that J ~ a ).i = 0,19 and the conformal factor relating the C4 

Eq. ( 3.35 ) and M4 is 1/UZ. This conformally related inter­
pretation of J* ~ a4) i~n illustration of Theorem 2.3 in which 
we choose V4=M4, V4=C4, and e2"= 1/UZ [refer to Eq. 
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( 3.35 )]. Since u .;1 ~ a) =0, Theorem 2.3 applies and hence 
j ~ a ) = e 2" J ~ a ) = ( 1/ U Z )J ~ a ) = J* ~ a4 ) [see ( 3.54 )] is a 
conserved current in C4 • 

Subcase w = 0: In this case (3.44 )-( 3.46) imply a4 = 0, 

b 4=ao, UJ~ =aa. Hence ofthe 15 constants appearing in the 
symmetry vector S i (3.40) there are ten essential constants. 
These may be chosen to be b i and UJ j so that (3.40) takes the 
form 

si=bi+UJjxj+(b4+UJ~xm )Xi-!UJ;S, 

(3.55 ) 

The vector Si of (3.55) can be shown to generate a ten-pa­
rameter group G it which can be represented by 

Git=[P a , W+P 4,SaP' Va]' 

where 

W=xiJ i, Va=xaw +Sa4-~SP a' 

(3.56) 

(3.57) 

This G io contains a seven-parameter subgroup of conformal 
motions G i = [P a' W + P4, SaP] which contains a 
G t = [P a' SaP] of motions. 

Since w*l, it follows from Theorem 2.1D that in order 
for the symmetry vector Si ( 3.55 ) to induce a conserved 
current vector of the form defined by (2.5D) the symmetry 
vector must satisfy 2" l: T=O. A simple calculation shows 
that of the ten symmetry vectors of G io the only ones satisfy­
ing this condition are given by G t. Since these define mo­
tions (and w=O) the associated conserved currents could 
have been obtained by the Trautman formula ( 1.4 ). For the 
remaining four nonmotion symmetry vectors of this G it 
concomitant conserved currents of the type defined by 
( 2.7D ) may be constructed by solving ( 2.6D ) for vectors 
A ~ ( which always exist locally). 

Subcase w*O,* 1: In this case (3.44 )-( 3.46) imply 
that a i = 0, ao = 0, b 4 = 0, UJ4 a = 0. The remaining six constants 
b a , UJ /3 lead to a six-parameter group of motion G it men­
tioned in the w = 1 case above. 

For this case 2" T = ° and by Theorem 2.1 D there will 
exist six conserved current vectors obtained from (2. 5D ). In 
this connection see the last paragraph in Sec. II. 

IV. DISCUSSION 
We have shown that symmetries of an energy-momen­

tum tensor lead to conserved currents which are expressible 
in terms of the energy-momentum tensor and the symmetry 
vector. In general these conserved currents do not follow 
from the well-known Trautman formulation. Since 
energy-momentum tensors are of considerable interest in 
relativistic theories we believe a study of their symmetries 
and concomitant conserved currents would be of impor­
tance. To better understand what new physical insight this 
new class of symmetries and their concomitant conservation 
laws may reveal will require additional experience with sev­
eral well-understood physical systems. Our further work 
along these lines has indicated that there is a close connec­
tion between the existence of the abovementioned symme­
tries, their concomitant conserved currents, and the kinema-
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tical properties of the matter and/or fields associated with 
the energy-momentum tensor. 17 

APPENDIX A: PROOF OF IDENTITY EQ. (1.17) 

Consider a second order tensor Sij =Sji in a Rieman­
nian space V 4' Define 

S =g ijSij =gijS ij' 

From (A 1) we obtain 

2.2"S=( .2"gij )S ij +(.2"g ij )Sij 

+gij.2"S ij +g ij.2"Sij. 

By use of (A2) and 

.!fgij = _giagib.!fg ab' 

we obtain 

(AI) 

(A2) 

(A3) 

2.2"S-gij.!fSij=gij.!fSij' (A4) 

From the formula for the Lie derivative of a relative tensor l 

we obtain 

=gll2g ij [.!f(Sij -!gijS)+S~k(S'j -!gijS]. (A5) 

Useof(A3) and (A4) in (A5) results in the identity 

g ij.!f [gIl2(Sij _!g ijS)] =_gIl2gij .2"S ij' (A6) 

A~PENDIX B: PROOF OF IDENTITY EQ. (2.10) 

From the definition of the Lie derivative we have 

.!f (gll2G ij F-g1l2 [( G ijS k);k+ G kjS ~ + G ikS ~ ], 

Gij=Rij-!Rgij' (BI) 

By contraction of (B 1) with g ij and use of the doubly-con­
tracted Bianchi identity and .!f (g1l2 R ) gIl2(Rsl);; we obtain 

.!f (g1l2R )=g1l2(R{Sk);j -!gij.!f [gll2(R ij -!Rg ij)] 

(B2) 
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We further investigate the infinite hierarchy of potentials and nonlinear symmetry transformations given in 
a previous paper. We outline a general method of explicitly calculating the potentials for a given 
spacetime. We show that some of the transformations can be exponentiated to finite values of their 
parameters, making them available as a means of generating new solutions. In particular, we show how 
our transformations may be used to generate all static solutions (including Schwarzschild), starting from 
nothing but flat space. 

1. INTRODUCTION 

This paper is the third in a series! on the stationary 
axially symmetric Einstein-Maxwell field. We are con­
sidering coupled electromagnetic and gravitational fields 
in the absence of matter, under the assumption that the 
fields are independent of two of the coordinates, t and 
cpo For this situation, we have shown that the reduced 
Einstein-Maxwell equations possess a remarkably 
large invariance group K, containing an infinite number 
of parameters. 

In paper I, we focused primary attention on two sub­
groups G c K and He K. G is the group of linear coordi­
nate transformations in t and cpo H is an eight-parame­
ter group isomorphic to SU(2, 1), and consists of cer­
tain nonlinear transformations of the field variables, 
The transformations of H are all related to the Killing 
vector in the t direction (they would continue to exist 
even if that were the only Killing vector2). Amalgama­
tion of G and H yields the entire group K. 

In paper I, we also began an analysis of K using an 
SU(2, 1) formulation, We found a set of new field vari­
ables upon which the action of H was linear. The new 
quantities form SU(2, 1) tensors, and thus the entire 
problem can be written in a form which is manifestly 
H-covariant. However the resulting equations are some­
what awkward to handle, The SU(2, 1) coupling coeffi­
cients flJk and dl Jk appear in the equations, and we con­
stantly had to invoke identities relating products of l' s 
and d' s to each other. We now believe that this approach 
should be saved for the case in which only one Killing 
vector is present, since then the rest of K would not be 
available. At any rate, linearizing H does not lead to an 
immediate solution of the problem, because now it is 
the elements of G whose transformations become non­
linear. 

In paper II, we turned to a G-covariant formalism, in 
which the basic objects of discussion are SL(2,R) ten­
sors, possessing nonlinear transformations under H. 
We introduced a hierarchy of fields EPA' RAB , A, B=1, 2, 
n =1, 2, coo, all obeying the simple field equations 

V$A =- ip-~AxVEPx, (1.1) 

(1. 2) 

a) Supported by National Science Foundation Grant PRY 76-
12246. 

and a hierarchy of potentials defined by 

VK=~V!'px, (1. 3) 

(1,4) 

(1. 5) 

(1, 6) 

(For further details, please see II,) We then showed 
that under the action of all infinitesimal elements of K, 
these objects go into themselves, again via nonlinear 
transformations. 

In the present paper we have several objectives. 
First, in order to help clarify the meaning behind our 
approach, we will show how the quantities we use can 
be related to certain components of familiar four­
dimensional objects, Also we will examine what gauge 
freedom is present in the definition of the potentials. 
We will show that for many of the generators of K, it is 
possible to perform explicit "exponentiation." Thus, 
some of the transformations can be written down in 
closed form for finite values of their parameters. This 
makes them immediately available for practical pur­
poses in generating new Einstein-Maxwell solutions. 

We next discuss a new method of calculating the en­
tire set of potentials for several simple spacetimes, 
starting with Minkowski space. We then see what the 
finite transformations of K do to those spacetimes. One 
motivation for carrying out such an exercise is to try to 
understand how K affects asymptotic flatness. So far we 
cannot claim to have found a nontrivial element of K 
which always preserves asymptotic flatness. In fact, on 
the face of it, K would appear to be the group which 
ruins asymptotic flatness in all possible ways! However 
there is a bright side to this, and K has already proved 
useful: one can "cure" spacetimes which were not 
asymptotically flat to begin with. 3 (Actually, we have 
every reason to believe that "good" transformations 
can be constructed from elements of K which are infinite 
linear combinations of our simple ones. ) 

Finally, we will turn to static metrics, a case which 
of course is already well understood. But we ask to what 
extent K relates the various static solutions to each 
other, Using identities which hold only in the static 
case, we can write more transformations of K in closed 
form. We find that the h2' s generate only other static 
solutions, and together they SUffice to generate all 
static solutions from anyone. 
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Geroch once conjectured4 that the complete group K 
would suffice to generate all stationary solutions. We 
have taken the first steps toward deciding whether that 
conj ecture is actually true. 

2. FOUR-DIMENSIONAL FORMULATION 

We would like to understand why the Einstein-Max­
well equations, which are relatively complicated, can 
be reduced to such a simple form as Eqs. (1.1), (1. 2). 
Consider first the Maxwell equations. In terms of the 
usual 4-potential F,.v =Av.,. -A,..v, half of Maxwell's 
equations are satisfied identically, and the remaining 
ones are 

OA,.=O. (2.1 ) 

Conversely the second half may be satisfied by introduc­
ing another 4-potential B,. related to F:v ' Writing the 
identities 

(2.2) 

(2.3) 

in terms of the potentials 

(2.4) 

(2.5) 

and adding Eq. (2,4) to i times Eq. (2,5), gives exactly 
our formulation, Eq. (1.1). By introducing the redun­
dant potential B,. we have doubled the number of vari­
ables, and replaced Eq, (2,1) by a set of first-order 
equations. 

• Now consider the Einstein equations, and let ~,., a = 1, 
2 be the two Killing vectors, From each Killing vector 
we can construct the Killing bivector 

(2.6) 

It is well known5 that in vacuum, Lv satisfies Maxwell's 
equations, 

(2.7) 

and that this is equivalent to a portion of Einstein's 
equations. As a consequence, the dual bivector, ~:v 
is also derivable from a vector potential, say 

0* a a 
~,.v=1)v;,. -1),.;v· (2.8) 

By repeating the same reasoning employed in E~s. 
(2.1)-(2.4), and identifying the components of ~,. +i~,. 
with H AB , we are led to Eq, (1. 2). Thus each of our 
fields ?P A, HAB corresponds, in four-dimensional terms, 
to a bivector solution of Maxwell's equations. 

Next, consider the first one of our sequence of poten­
tials, 

(2.9) 

As shown in II, the imaginary part of K is algebraically 
expressible in terms of CPA, so consider just the real 
part. The electromagnetic invariant F:vP"v can be 
written in two ways in terms of the potentials 

F* li',.v _.!.E,.VUTA A 
""vA-- -2 &I;'" Tia 

= - t€U.IJC1TB&I;~BT;a 0 
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Hence 

which is expressible as a total divergence 

J";U=O, 

where 

(2.10) 

(2.11) 

Equation (2.10) implies the existence of a bivector KUT 
such that 

(2.12) 

Comparing Eqs. (2.9), (2.11), and (2.12), we see that 
our potential K corresponds to the particular component 
K34. 

Likewise, the other potentials we use may be derived 
by replacing F,.v with Lv in the above discussion. 

3. GAUGE TRANSFORMATIONS 

Each of the potentials was defined by Eqs, (II. 2.10)­
(11.2.13) only up to an arbitrary integration constant. 
One might therefore want to consider the effect of gauge 
transformations which change these constants. How­
ever not all of the potentials are algebraically indepen­
dent. We have chosen to impose certain relations be­
tween them, Eqs. (II. 2.16)-(11. 2. 22), and these amount 
to constraints among some of the constants. To see how 
many potentials remain independent, arrange them in 
towers, e. g. , 

01 
NAB 

flAB' 
03 
NAB, 

with m + n;: q = const on the qth level. Given all the 
potentials1in t!1e fir,;st q1levels, one new potential of each 
type (say K, 't B, MA , NAB) is sufficient to determine the 
others on the (q+1)st level, via Eqs. (II.2.19)-(II.2.22). 
The few remaining constants are further restricted by 
Eqs. (II. 2 .16)-(11. 2 .18). All we can do at last is to add 
a real constant C1 to K, a complex constant cA to LA and 
M B, and a Hermitian constant YAB to NAB. But these 
gauge transformations are nothing new, They are pre­
cisely the ones which already occur in K, with one 
exception. In K, YAB was real and symmetric, The new 
part now permitted will be imaginary and antisymmetric, 

(3.1) 

The new transformation is 
1ftn mn II"''''' n lIm. n+" k m& /I-s+1, n 
K-K+2iTK - 2iTK - 4T(L;K K ) 

8 

(3.2) 
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mn mn km +It, 11 km, n+k 

NAB - NAB - iTNAB +iTNAB 

-4}~~tt:+j·") +i}(~NAX~~;)O 
We should add a word of explanation why T was original­
ly overlooked in no By repeated application of the re­
cursion relations, Eqs. (n. 2. 19)-(II. 2.22), one can 
prove that for k>o 1, 

m, n+k m+k, n (ms k-s+1, 11 m~ k_S,") 
1\ -K =~2iKK _Lx M X , 

m, n+ll m+k, n (ms k-s+l," ms k-S,") 
LB - LB =L; 2iKLB - LxNXB , 

s 
m, n+k m+k, n (ms k-5+1, n ms k"'s, ") 
AlA - MA =~ 2iMAK - NAXMx , (3.3) 

m, n+lt m+k, n (rns k-s+1. n ms k-s, n) 
NAB - NAB =~ 2iMALB - NAXNX B • k 

Inserting this in Eq. (n.3.3) one finds that ~ and Tare 
equivalent, but onZv fay k'" 1. For 1? ~ 0 the quadratic 
terms in~, ~ vanish, leaving linear terms, For k = 0 

" even the linear terms coincide, but for k ~ -1, a and 
t are different. 

4. FINITE TRANSFORMATIONS 

The finite transformations of K can be obtained from 
the infinitesimal ones given in paper n by "exponentia­
tion," However this process is not completely straight­
forward for the group we are dealing with, since the 
infinitesimal transformations are nonlinear in the 
potentials. The exponentiation will be an infinite power 
series in the group parameter, with coefficients of ever 
increasing complexity, The transformation may eventu­
ally involve the entire infinite set of potentials (or pos­
sibly an infinite subset of them, ) In that case, there 
would seem to be little hope of summing the series to 
get a useful closed form, 6 That is exactly what does 
happen for the transformations h2 and (J, Fortunately, 

. k k k k h' 1 the other transformatlOns Yjh Y22, ch c2 eac mvo ve 
only a finite number of potentials at once, and we have 
succeeded in writing some of them down in closed form, 

From Eq. (II.3.1), the infinitesimal transformation 
k 

for YZ2 is 
mn mn ms k-s, n 

Njj - iVjj + yL; Nl1Nl1 , 
s 

mn mn m, n+k ms k-s, n 

.'Vj2 - Nj2 - yNl1 + yL; N jjN j2 , 
s 

(4,1) 

(4.2) 

I 

For genera!jk, the transformed quantity of particular 
interest is Nij : 

01 
Nl1 - Pk-dQk, (4.12) 

where P k , Q k are polynomials in y of degree k: 

P k =-»11 + y( ) + ... + yk.6. k+ j , 

Qk=1+y( )+"'+ykil. k , (4.13) 
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nan mn m~,n ttiS k-.5, n 

N2j - N2j - yNjj + yL; N2j NU , 
s 

m11 mn 7t1,*, n ?tI, nM mS 11-8, n 

N22 - N22 - yN12 - yNZt + yL: N2jN j2 , 
$ 

m11 mn ms It-s, n 
:V1j - M j + yL; N jj lV1 j , 

$ 

m11 1'71:11 m+ll,11 ms 11-8," 

M2 - M2 - yMj + yL; NZjMj , 
s 

m11 mn ms Il-s, " 
L j - L j + yL: L jN l1 , 

s 
m" mn m. n+k (ms k-s, ") 
L z - L2 - yL t + y ~ L jN j2 , 

mn mn (1118 1I-s, ") 
K - K + Y 2: LjMj , 

s 

(4,3) 

(4,4) 

(4.5) 

(4.6) 

(4.7) 

(4,8) 

(4.9) 

We see from the summations that it is convenient to 
treat m, n as matrix indices, For given k, we define 
matrices N l1 , N j2 , L t , etc, as 

k-m,11 

(Njj)",n'" Nl1 

and so on. Notethatn=1, 2, ... ,00, m=k, k-1, ... , 
0, - 1, .•. , - 00 so that these matrices are infinite. 
However the sums run only over s = 1, ... , k. It turns 
out to be possible to write the following results in a 
form in which only the square submatrices m, n==1, 
•• " k actually participate in the matrix operations. 
Indices outside this range can occur only as unsummed 
indices, at the beginning and end of each term. 

To illustrate this, consider Eq. (4. 1), which is 

Nj! - N jj + YNjjN j !. 

The exponentiation is 

N jj - Nl1 + yNl1N l1 + y 2N l1N l1N l1 + ." 

= y-j [(1 - yN I1 )"j - 1]. 

As written, this expression is meaningful and valid only 
for m, n"" 1, ... , k. However, written in the equivalent 
form 

(4. 10) 

it is valid for all m, n. The inverse still involves only 
a k x k matrix. (To check such a result, one need only 
show that it forms a one-parameter group, and has the 
right infinitesimal limit. ) The finite transformation for 
k == 2 written out in complete detail is 

(4.11) 

The transformations for all the other potentials can 
be written in a similar notation. Let 

( ) 
~/{_m. n 

'Nu mn ==Nl1 , 

a1{-m,n+k 
('N1j )mn ==Nl1 • 

We have obtained the following results: 

W. Kinnersley and D.M. Chitre 
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N12 - (N 12 - yN fl) + y(Nll )(I - yNll )-I(NI2 - yNfl) , 

N21 - (N21 - y'Nll ) + Y(N21 - Y'Nll )(I - YNl1)-I(Nll) ' 

N22 - (Nn - y'N12 - YN~1 +y2'Nfl) 

+y(N21 - y'N l1 )(I - yNl1 )-I(NI2 - yN fl) , 

Ml - Ml +y(N11 )(I - YNll)"I(Ml) ' 
(4. 15) 

M2 - (M2 - y'M1) + y(N21 - y'Nll )(I - YN11)-I(Ml) ' 

Ll - Ll + y(L1)(I - yN11 )-1 (N11 ) , 

L2 - (L 2 - yLD + y(L 1)(I - yNll )-I(NI2 - yNfl) , 

K - K + y(L1)(I - yN I1 )"I(M1). 

The transformations ~11 may be written down also, 
simply by interchanging indices, 1- 2. Likewise, any 
transformation for which; AB is a null parameter 
(0 Y;xy=0) may be just as easily exponentiated. How­
ever the ~12 transformation is not null in this sense, 
and cannot be included in the results. We postpone its 
discussion until Sec. 7. 

5. CALCULATION OF POTENTIALS 

We will now discuss a method for directly calculating 
the hierarchy of potentials for some particular space­
time. As indicated in Sec. 2, it is sufficient to calcu­
late just i'I AB' The two relevant equations are 

I. * Ax VNAB =HXAV B, (5.1) 
n+1 . 1Tt n x 
HAB =z(NAB +HAXH B)' (5.2) 

I. 
Eliminating NAB, we get 

.+1. * lI.x .'x VHAB =z(HAX + HXA)Vlf B +zH BVHAX (5.3) 

which is the same as Eq. (I I. 4.3). To find the solution 
we introduce a generating function 

F AB(t) = ~t"HAB 0 (5.4) 
.=0 

Multiplying Eq. (5.3) by t·+1 and summing, we get 

VFAB =it(HAX + HiA)VFX
B + FXBVHAX ] 

or 

[OAX - it(HA x +H.t A)] VFX
B = it (VHAX)FX

B • (5.5) 

Denote the bracket on the lhs by GAB(t). Since iFAB(O) 
= GAB (0) = oA B, . the matrix inverses of F and G exist 
(at least as formal power series in the neighborhood of 
t=O). Using matrix notation, Eq. (5.5) may therefore 
be rewritten as 

(5.6) 

Using the explicit form of G, and the field equation, 
Eq. (1. 2), this may be further simplified to 

(V F)p-l =itS-2(VH - 2t(zVH + pVH)], (5.7) 

where 

S2=detG 

= 1 - 2it(HX
x +H* XX) + t2(HXY +H*YX)(Hxy+H* YX) 

= 1- 4tz +4t2(p2 +z2). (5.8) 

The procedure for a particular spacetime will be to 
first calculate HAB the integration of Eq. (11.3.14). From 
HAB , the rhs of Eq. (5.7) may be determined. Further 
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integration then yields F(t), which may be expanded to 
produce the hierarchy. 

In fact, a general "first integral" of Eq. (5.7) exists, 
and leads us to an important identity. Let {3 = det F. 
Taking the trace of Eqo (5. 7), we obtain 

{3-1V{3 = - S-lV S 

=:;> (3 = c(t) S-l , (5.9) 

where c(t) is an integration constant. Now arbitrary inte­
gration constants do appear in each HAB , as discussed in 
Sec. 2. We are therefore free to choose c(t) to be as 
simple as possible, consistent with the first two terms, 
kB and RAB• Using the definition of F, Eq. (5.4), 

(3 = - 1 - 2tz + 0(t2) • 

Hence we can choose c(t) = - 1 . 

Expanding in powers of t, 

5-1 =6(2rt)'P.(cosB) , 
"" mn mn 

(3 = LJtm+'(H1/Jl2 - H 12H21) 

= t6t·(6HhAxy) , 

where 

r = (p2 +z 2)1/2 cosB =z/r • 

We therefore find the identity 
".-k k 
LJHXYHxy = - 2(2r)'P .(cosB) 
k 

which will find application in Sec. 7. 

(5.10) 

As an example, we now complete the calculation for 

flat spac[e. :~ :~VJe 
H= , 

- 1 - 2iz 

(vF)F"'~its-'G - 2pVp + 4tp(zVp - pvz~ 
-2iVz+4it(pVp+zVz) J. 

To solve, let 

F = [~ ~J, AD - BC = {3 , 

(

DVA_CVB 
(V F)p-l = (3-1 

DVC-CVD 

AVB-BVA\ 

AVD-BVC). 

Equating elements in the first column, we find neces­
sary conditions: 

C = aD, A = aB + b, bD = (3 • 

To first order, 

(
-i 

F= 
-t 

so the simplest choice is 

a=-it; b=-i. 

(5.11) 

(5. 1~' 

(5. 13) 

The elements in the second column now yield the solu­
tion 

(5. 14) 

Expansion of A, B, C, D in powers of t leads to the 
flat-space potentials 
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/111 = (2r)n-1Pn_1 (COSe), 

/112 = i(2r)nPn(COSe) 

/121 = ~in-l (2r)nsineP~_1 (cose) , 

/122 = -1(n + 1>-1(2r)n+lsineP~(cose). 

(5.15) 

These are equivalent to the forms given in Eqs. (II.4.7), 
(U.4.16), (U.4.17), but the functions involved are much 
more familiar. 

In fact, the H AB have turned out to be solutions of 
Laplace's equation, for which there is a ready explana­
tion. As a general consequence of Eq. (1. 2), 

V'(p-2 fAXV1IxB) = O. (5.16) 

This reduces to Laplace's equation for flat space. The 
same equations are also obeyed by FAB(t) itself: 

V FAB = - ip-1fA
XV FXB 

(5.17) 

One more curious result involving flat- space poten­
tials might be mentioned. When the Nil are calculated, 
one finds that ~1!1 with m ? 1 all vanis h. 

As an easy generalization, one can also derive the 
potentials for static cylindrical metrics, 

(11 = p2ex; f12 = 0; f22 = - p2-2" , (5.18) 

where a is an arbitrary constant. We find 

Hll = (2O')! n+" _ICn_l (2r)n-l (sine)" P~~I+" (cose) , 

H12 =in_"Cn(2r)n(sine)exP~_,,(cose), (5.19) 

H21 = - ±i (n + a t 1(2a)! n+"C n(2r)n (s in 8)1-" P~-_~+" (cos e), 
H" l C (2 )"+I( . e)I-"p,,-I( il) 22 = - 2".,.", n-I r SIn "_ex COSu , 

where nC m is the binomial coefficient. Potentials for the 
Schwarz schild, Kerr, and Tomimatsu-Sato solutions 
will be derived in paper IV of this series. 7 

6. ASYMPTOTIC BEHAVIOR 

We now ask what happens when the transformations of 
K are applied to flat space. For the infinitesimal trans­
formations we find 

~ 11 : H 11 - 1 + i'Y(2r)k+1 P
k
+1 (cos e), 

k 
Yl2 :Hll -1- 2Y(2r)kPk(COSe) , 

;22 : H 11 - 1 - iy(2r)k-1 P k-I (cose) • 

(6.1) 

The weak gravitational fields thus generated are static 
and stationary multi poles of all orders, but of the 
"wrong" variety. They are all inner solutions, in the 
sense that the sources which produce them lie at infini­
ty. None of them are asymptotically flat. However, as 
was pOinted out in II, the asymptotic behavior resulting 
from a finite transformation may be entirely different. 

U sing the results of Sec. 4, we find 

(6.2) 

2 H (1 2' 2 2)-1 '}'22: 11- + zyz-yp , (6.3) 

3 1 _ iyp2 
Y22: HI1-1+iY(4z2_3p2)_y2(p4+12p2z2)_iy3p6 ' 

(6.4) 
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For general k, the structure is 

(6.5) 

where P k , Q k are polynomials of degree k in the argu­
ment iypk~l, with coefficients that are functions of z/ p. 
Note in the examples above that the leading coefficients 
are particularly simple, It would appear that for flat 
space the determinant at defined in Eq. (4.13) has the 
value 

(6.6) 

although we have not been able to prove this in general. 

In the asymptotic limit p - "", the leading terms domi­
nate, and 

(6.7) 

Thus the new solution is asymptotically a static cylinder 
metric, and not asymptotically flat. 

What if we started with a cylinder metric? The gen­
eralization is straightforward and we find 

Hll - ip'" P k-2/Qk, 

where P k, Q k are now polynomials in iypk-'" +1 , and 

a
k 
= (_ i pk+",-I)k 

In the limit p - "", two cases must be distinguished. For 
k +a -1> 0, 

Hl1 '" (_ )k+l y -2 p-2(k+"'-1l 

but for k + a-I"; 0, the leading terms no longer domi­
nate, and 

H11 '" pOi. 

In either case, the metric generated is asymptotically 
a static cylinder, not asymptotically flat, 

7. STATIC METRICS 

We now ask what general conclusions can be drawn 
if the metric under consideration is static. We would 
have 

f11=j, fI2=0, i22=_p2j-l 

and from Eq. (I. 3. 14) it would follow that 

<P11 = <P22 =0. 

(7.1) 

(7.2) 

Thus Hll> H22 become purely real, and H12 , H21 purely 
imaginary. Examination shows this to hold for all of the 
potentials, In matrix form, 

if - ( Real Imag ) 
Imag Real ' 

mn (Imag N-
Real 

Real) . 
Imag 

(7,3) 

The number of independent functions is thus effectively 
reduced by half. A few interesting identities follow at 
once from this, For example, using Eq. (n. 2. 18) we 
can show that some potentials factor: 
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The main point of interest" however, will be to obtain 
in closed form the action of 'Yt2' Fr'ilfll Eq. (II. 3. 1), 
the infinitesimal transformation on N 11 is 

01 01 kl O. k·:·l <?s.. k-s, I Os k-s.l 
N 11- NI1 - Y[N 11 + NI1 +6 (Nll N21 +N12 N I1 )]. (7.4) 

s 

As written, the summation runs over s == 1, ... ,k. The 
simplest approach is to use the option mentioned in II, 
of extending the sum over all values of s, both positive 
and negative. The linear terms then need no longer be 
written separately, since they result from s == 0 and 
s==k+1. 

Using Eq. (II. 2.15) and the reality conditions for 
static potentials, we can show that 

ml O. m+1 Om 01 01 01 Om 
NI1 == - NI1 +NI1 (N12 - N 21 ) - 2N I1N 21 , 

ml O. m+l Om 01 01 01 Om 
N 21 == N12 -N12(NI2-N21)+2Nl1N22' 

The bracket in Eq. (7.4) Simplifies to 

since the remaining terms cancel. This sum is equiva­
lent to the expression we evaluated in Eq. (5.10). Our 
infinitesimal transformation thus becomes 

(7.5) 

Since it is no longer nonlinear, the exponentiation is 
easy to do: 

01 01 
NI1 - Nl1 exp(- 4y(2r)kPk(COSe). (7.6) 

It is well known that the static metrics can be solved 
completely by letting f == exp(2x), where X obeys 
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Laplace's equation. What we have now shown is that 
under h2 

(7.7) 

By using each ~12 in succession, k ==0,1", 0, we may 
add to X any harmonic function which is regular at the 
origin. Thus if we start with flat space, X == 0, any 
Weyl solution may be generated, provided only that we 
choose the origin to be a point where the desired X is 
nonsingular. To generate Schwarzschild, for example, 
we want for X the potential of a finite rod. We take an 
origin displaced away from the rod, say some distance 
out along the z axis. The expansion coefficients of X 
about this origin provide the necessary "1/S. The 
metric will be given as a sum over k which converges 
only out to the nearest singularity (the end of the rod) 
and not to spatial infinity. Its asymptotic flatness will 
not be apparent until we do the sum and extend the 
result analytically. 
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Quantization on a manifold with connection 
J. Underhill 

Department of Applied Mathematics and Theoretical Physics. The University of Liverpool. 
Liverpool. England 
(Received 26 July 1977) 

We give a rule Q which generalizes the Weyl correspondence to systems whose configuration space is 
equipped with an affine connection. We show that [Q(f). Q(g)] = iQ({f. gj) for arbitrary fprovided g 
has the form X'p;. where X; is an affine vector field. 

Dirac's ideal that quantization of a classical system 
means finding a representation of the Lie algebra of 
classical observables by operators in Hilbert space has 
been the starting point for most work in this subject. 
Since the work of van Hove2 it has been clear that the 
operators of such a representation have no direct 
interpretation as quantum mechanical observables. 
Extracting such observables by means of a polarization 
of the classical phase space (i. e., passing from pre­
quantization to quantization in the terminology of 
Kostant3) seems to lose one the ability to quantize most 
classical observables, as well as requiring, usually, a 
great deal of symmetry in the system. 

One might try to weaken Dirac's requirement for a 
quantization by imposing the condition 

[QU), Q(g)l=iQ({j,g}) 

({ } is the Poisson bracket, Q denotes quantization, 

(1 ) 

n = 1) where the classical observable j is arbitrary 
while g lies in some restricted class of observables. 
Weyl's correspondence4 provides a quantization in this 
sense; in this case phase space is R2" and (1) is satis­
fied for all j provided g is a quadratic function of the 
coordinates xl, ••• ,x",PI,'" ,p". In particular g may 
have the form (p,X)=Xi(X)Pi' where P =Pidxi and the 
components of the vector field X =xl(a/axl) on configu­
ration space R" are first-degree polynomials in 
x! ... ,x". Vector fields of this type are precisely the 
affine (or affine Killing) vector fields on R", i. e., the 
fields satisfying Lx'Vo=O, where 'Vo is the canonical 
flat affine connection on R". 

In this paper we consider a system whose phase 
space is the cotangent bundle T*M of an n-dimensional 
Coo manifold M equipped with a symmetric affine con­
nec tion 'V. A quantization Q which reduces to Weyl' s in 
the case M=R" is defined and it is shown that Q also 
singles out the affine vector fields on M in the way 
described above. Q assigns differential operators to 
functions which are sums of terms of the formjx, 
where X is a symmetric contravariant tensor field on 
M of order 111 and 

m factor~ 
~ 

jx(x,p)=(p®,,, cgp, X(x». (2) 

The highest 111 occurring is then the degree of the poly­
nomial. It is convenient to restrict Q to such poly­
nomial functions, since this allows us to avoid assump­
tions about the completeness of V. 

DEFINITION OF Q 

The Weyl correspondence assigns to the function j 
on R2" the linear operator in L2(R") written formally 

W U ) = J j (ell, ••• , a", /31, ••• , /3") 

A X exp~a iXi + (31 a:,)dal ••• d/3", 

where j is the Fourier transform of j; 

j(x ,p) = J j(a, f3) exp(ia j x l + i(3'P )dal '" 0 d/3". 

A formal calculation shows that the matrix element 

(<fl, W(j)<t;) = J~(W(j)ljJ)(x)dxl 0 o·dx" 

= 1T-" J<fl(x - v )ljJ(x + v) e-2i(p,v)j(x, p) 

x dVlooodxlooodPlooodp", 

for <fl, ljJEL 2(R"). 

(3) 

The quantization Q is defined by trying to make sense 
of (3) when R" is replaced by M. M is not provided with 
a natural measure, so we let the Hilbert space of 
quantum states be the completion of 'oo(M), the space of 
COO complex scalar 1-densities on M of compact support. 
Then, given lJ!€'oo, we wish to use the exponential map 
Ex (corresponding to the connection V) to pull 1/J back to 
a 1-density on TxM. We avoid difficulties which arise 
because Ex is defined only near 0 in TxM by introducing 
a cutoff function X on T M which, for each xEM, vanishes 
outside a normal neighborhood of OET xM symmetric 
with respect to reflection in 0, and is unity in some 
smaller neighborhood of O. Then the product 1/J; = XE:1/J 
is a 1-density E'oo(T xM), nonzero only in supp X (x, 0) 
and defined there as X (x, v) times the pull back of ljJ at 
Exv. Similarly we define 1/J;, simply replacing Ex by the 
map v-E,,(-v). 

Since the product of two 1-densities is a density, 
given <fl, lJ!€'oo(M), the expression 

J e-2I<p,V)1/J;cp;= <T>(x ,p) (4) 

defines a function <T> on T*M, of rapid decrease in Ilpll 

with respect to any Riemannian structure on M and, 
provided X is chosen suitably, compactly supported in 
x. (For example, let S be any compact set containing 
supp 1/J in its interior, then given a Riemannian struc­
ture on M, ::3 t> ° such that E"v€ supp 1/J, Ilv II < t ==">XE S. 
Choose X so that X (x, v) = ° whenever Ilv II ~ t, then 
<T>(x,p)=O if xtS). Hence givenjEC'\.T*M), polynomial 
in the momenta, we may define 
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(cp, Q(f)Iji) = 71-" f <I> (x ,p )f(x, p) dJl (X ,p), 

where dJl (x, p) is the canonical volume element on 
T*M. 

Property 1. Q(f) is independent of the choice of X 
and is a differE'ntial operator of order equal to the 
degree of f. 

Proof. It is sufficient to consider the case f = fx 

(5) 

[see (2)], where X vanishes outside some coordinate 
neighborhood UcM, (the general case follows by a parti­
tion of unity argument). If x!, •.. ,x" are coordinates in 
U and 1'1, ••• , v", p, .•. ,p", the induced coordinates in 
TxU, r;U, 

(cp, Q(fJIji) = rr"" f dx1 ••• dx" f dP! •• 0 dp" 

x <I>(x,p )XI! ... lm(X)PI! ••• Pl
m

. 

Now 

[where D(x, v)dv! 00 ·dv" is the expression of <fJ;({i; in 
loc al coordinates], 

= (2i)"m{(e-21(P, v) . am D(x v)dv 1 " .dv"dPl' •• dp JJ av'j 0 " av lm ' " 

=(2i)"mrr"a II am a I D(X,V)/ • 
v .0' V m v=O 

So 

(cp, Q(lcli/J) 

For each x, X(x,v)=l near V=O so that (6) is inde­
pendent of the choice of x. 

Now suppose cp=4?(x)(dx
j
,·.dx")1I2, Iji=~(x) 

(6) 

x (dx! • 0' dx")112 in local coordinates; let ~,,=E,,(±v) and 
let J. be the Jacobians det(a ~!/avj), then near v = 0 

D(x, v) = ~(~.)'~(U( IJ,J_I )112. 

Hence amD(x,v)/av ll ':-" avlml v: o is a sum of products of 
derivatives of fP and Iji of total order ~ m. Integration by 
parts in (6) to remove derivatives of 4? shows that Q(fx) 
is a differential operator of order ~ m. The highest 
derivative arises from the term 

in am D(x,v)/aVlj" .dvlm Iv-o, which contributes 

(2i)"m~1""'m(x)t(m) I am 
k:D k ax I, •• axim 

=i-mX'j""m(x) I am 
ax I ••• ax1m 

to Q(fJ, 

Examples 
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so 

fx(x,P) =X(x). 

(cp, Q(fx)lP) = fq;(x)X(x)~(x)dxj •• ·dx" 

= fi(X)x(x) Iji(x) , 

fx(x,P) =Xi (X)Pi. 

-:::::ra
O 

D(x, v) I = '::;:Taalji (x)-;f(x) - ~(x)~oa -;f(x), 
v v:o X X 

(cp, Q(fJIji) 

(7) 

= (2i)"1 Xl (x{#r (x)qJ(x)- ~(x)a7 ;p'(x) )dXI 
•• ·dx" 

= (2iti q5(x) [x'(X)-#-(x) +a7(x'(x)~(x»JdXl •• ·dx" 

= - i .J4?<,XT[x' (x)Vllji(x) +i(V,X'(x» Iji(x)]. 

Thus 

(8) 

where VI denotes covariant derivative. 

If X is a vector field and Y a function on M, then (7) 
and (8) show that 

[Q(Y), Q(X)]=iX(Y) =iQ(X(Y», 

so that the canonical commutation relations are 
satisfied. 

n1=2: 

fx(x, p) =XiJ(x) PIP J. 

The calculation here is similar but more tedious, since 
J" contribute to the result, which is 

Q(fx) = (- i)2[x' JV IV J + (Vlx<J)V J 

+t(Vj'V',x'J) +I1RijXiJ], 

where R jj is the Ricci tensor. In particular if 'V' is the 
Riemannian connection on a Riemannian space M, then 
Q(IIPII2)=(_i)2(A+n-R), where A is the Laplacian andR 
the scalar curvature. 

Finally, it is easily seen that 

(cp, Q(f) Iji}= (Q(j) cp, Iji), 

so that Q assigns to real functions on T*M densely 
defined symmetric differential operators in the Hilbert 
space of quantum mechanical states. 

AFFINE VECTOR FIELDS 

A vector field X on M is affine if it satisfies LxV 
= O. 5 The result proved in this section, namely that if 
X is affine then 

[Q(f), Q(fJ] = iQ({j,jJ) 

for all observables j, depends on the simple way in 
which affine fields vary along' geodesics in M. Thus, 
let Ht, x, v): exp,,(vt) and suppose 11 close enough to 0 so 
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that for t E [- 1, 1], ~ lies in a coordinate neighborhood 
U c 1\;1. 

LelJllI/a: Let X be affine, then 

Xi(~) =X'(x) a~i. + ax' (x) 11k a~~ . 
ex) axk all 

(9) 

Proof: (9) clearly holds when t = 0 and furthermore 

a (X}(x) :~; + a
OX

: (x) 1,k (00~~) I 
at uX x U t=O 

aX} k' axi k axi I 
= axk (x) l' OJ = axk (x) v = at(~) t=O 0 

The result follows when we have shown that both sides 
of (9) satisfy the same second order linear differential 
equation in t. Differentiating 

2 i } k 

a ~ + ri (t) ~ ~ = 0 
~ )k S at at (10) 

with respect to xi and 1/ successively, we see that the 
right hand side Zi of (9) satisfies 

a
2 
Zi + Hi (0 ~ az

k +.iSs. (t).it .ir Zl = 0 7 )k at at a~1 S at at • 

Now, in terms of coordinates LxV = 0 becomes 
V, V k Xi + RLk Xl = 0, 5 or when written out in full 

a2xi I axi . axl 
a~ia~k (0 =r'k(O W (~) - r~I(O W (0 

. ax l ari I 
- r]z(o a[k (0 - a~ (~)X (~), 

so that 

_ ! a~k axl or! ae a~k I 
--2rk1 may- ay-m- War ar x m. 

Q.E.D. 

Corollary: Let J(t,x,v)=det(ae/av'), then 

aJ ax' aJ (ax! ax!) 
x' (x) ax' + axk (x) v

k avr = W m - axr (x) J. 

Property 2: If X is an affine vector field on M, then 

[Q (f), Q(f,,) 1 = iQ({j,f .. }) 

for arbitrary observables f. 

Proof: Given cp, IjJEDo(l\!l), 

(cp, [Q(f), Q(f.)] </J)= (cp, Q(j) Q(f .. ) </J) 

- (Q(fi) cp, Q(j) ~,), 

(where X is the affine vector field complex conjugate 
to X) 

=rr·" f 'I!(x,p)f(x,P)dlJ.(x,P), (11) 

where 
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'I! (x , P) = f exp(- 2i(P, v) ) [(O(fx)1jJ); cp; - 1jJ;(Q (fx) cp);L 

(12) 

If we assume that for v such that x(x,v)*O, Ht,x,v) 
lies in a coordinate neighborhood U of x for t E [- 1,11, 
then 

+~ Wm~m) IIJI] L.1X(x,V)(dV1"'dV")1/2 

=- i [(xJ(X) b ~m + ~~' (x)vk fvr ~m 

+ ~ ~m ~m ) II JI ] I t.l X (dl,l ... dv")! /2, 

by the lemma, and from the corollary we get 

. [ a - ax' a =-z xJ(x)w(IjJC~.)/IJ.I)+ axk (x)vkw~(U/IJ.I) 

1 ax! ] + '2 a;;r-(x) ~(U II J. I X (dv 1 ... dV")l /2. 

Similarly 

(Q(fx) cp); 

= i [x' (x) -b(cp(~.) II J.I) + ~:: (x) v k ab- (~(~.) II J.I ) 

1 ax' -- ] +"2 axr (x) <p(~.) I I J.I X (dv 1 ... dv")i!2 • 

Substituting into (12) and integrating by parts, we get 

. ( a axJ a \ 
'I!(X,P)=-l Xi(x) axr - a;r;(x)PJ apk} cI>(x,P) 

+ i f exp(- 2i(p, v> ((Xi (x) -b (x2
) 

The integral in (13) contributes nothing when we inte­
grate over T* M, since its integrand vanishes in a 
neighborhood of v = 0 and, as in Prop. 1, its behavior 
elsewhere is irrelevant. Finally, assume that f has x 
support in U (general case by partition of unity), then 

(cp, [Q(f), Q(fx)] 1jJ) 

. {( af axi af ) 
=1 J ,Xi axr - axt PJ ap

k 
cI>(x,P)dlJ.(x,P) 

REMARKS 

The exponential map on a manifold M with affine 
connection provides an unlimited number of ways of 
assigning linear operators to functions on T* M. None 
of these ways can be expected to solve the "Dirac prob­
lem," so it seems sensible to look for weaker condi­
tions which might serve to single out certain quantiza­
tions as having some physical interest, such as the 
canonical commutation relations: 

[Q(Y), Q(X)] =inQ(X(Y), 
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(X a vector field, Ya function on M), or a "corre­
spondence principle" version of Dirac's condition, say 

[QU), Q(g)l =inQ({f,gy), (14) 

where 

{f,g}, = {f,g} + O(Pi). (15) 

It is easily checked that the quantization defined in this 
paper satisfies these rather weak requirements [with 
O(n2) replacing O(hi in (15)1. 

Property 2, imposed as a condition on Q, appears to 
be more restrictive. In fact, if we insist also that Q 

generalizes Weyl quantization in a manner uniformly 
applicable to arbitrary (:ll, V), then it seems likely that 
Q must be as defined here. Of course, whether or not 
Prop. 2 provides a serious restriction on quantizations 
of a particular T*M depends on how many independent 
affine vector fields ill possesses. 

The physical significance of Prop. 2 is not very 
clear. If V is the Riemannian connection on a 
Riemannian space Al then affine vector fields have a 
simple relation to the free particle motion on M, cor­
responding to the Hamiltonian H(x,P)=illpII 2• Namely, 
if X is affine thenfA~(t),p(t) varies linearly with the 
time. [In fact 

~ fx(x,P) = (VlVJxk)gilgJmpkP,Pm= 0 

since gJmfillvjvJxk + (cyclic permutations of k,l, m) =0 
as a consequence of VtVJXk + R~IJX' = 0 and properties 
of the Riemann tensor.] Killing fields, defined by L.,fJ 
= 0, have the property that fx is a constant of the classi-
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cal free-particle motion. Killing fields are affine fields 
so Prop. 2 implies that Q(jx) is a constant of the motion 
with Hamiltonian Q(H). 

We observed that the ~yl correspondence satisfies 
[wef), W(g)] =iW({f,g}) for all f also when g= illPI1 2 

= pi + ... + p~, a condition with clearer physical mean­
ing, since it implies that the classical and quantum 
dynamics of a free particle in R" are identical. It is 
easily checked that Q does not have this property even 
in the simplest (nonflat) cases, e. g., spaces of constant 
curvature. For such spaces the definition of Q can be 
modified slightly so as to guarantee a weaker property, 
that constants of the classical and quantum free particle 
motions correspond. 6 Bloore et al. 7 have shown that no 
quantization of a certain class (including our Q) can 
have the stronger property unless M is of constant 
curvature or Ricc i flat, 
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Generalization of the inversionlike integral equations and 
application to nonlinear partial differential equations. II 

Henri Cornille 

Rockefeller University, New York, New York 10021 
and D,P,H.T. Sac/ay, BP n' 2, 91190 Gif-sur-Yvette, France 
(Received 6 May 1977) 

Using pedestrian algebraic method, in the case of a coupled system of n linear first order differential 
equations (l1.o-icf>A -Q)IjJ=O, A=(I);/I.;), l1.o = (l)uJL;(x)(a!ex», Q =(qj), we deduce inversionlike 
integral equations (from which we can construct a class of potentials without introducing the data). 
Assuming, like in the Zakharov-Shabat theory, that the kernels of the linear integral inversion equation 
satisfy linear partial differential equations, we deduce, for the solution of the integral equation, the 
corresponding nonlinear partial differential equation. We show that the validity of the whole formalism 
depends mainly on the set of {Ad of the associated differential linear system. We discuss fully the 
different possibilities which occur depending on different sets of {A;) . 

I. INTRODUCTION 

Since the pioneering works of Gardner, Greene, 
Kruskal and Miura, la Lax, Ib Zakharov and Shabat, Ie 
Ablowitz, Kaup, Newell, and Segur!d the so-called 
"inverse scattering method" is considered as a useful 
tool in order to explicitly construct the solutions of 
some nonlinear partial differential equations!· 
(nlpde). 

In a previous paper,2 we have realized that in order 
to get integral equations (IE) such that we can generate 
both a class of solutions and of potentials of a differen­
tial system (and the related nlpde), it was not necessary 
to study the properties of the J ost solutions in the com­
plex eigenvalue plane, and that these investigations could 
be replaced by pedestrian algebraic methods. In this 
way we deduced the IE (and some associated nlpde) cor­
responding to a linear first order differential system 
ill(x)(a/ax) of n coupled equations with a second-order 
eigenvalue problem. However, other physically inter­
esting nlpde cannot be deduced by this scheme. Manakov 
and Zakharov,3a and Kaup,3b have considered a third­
order problem and a generalization has been done by 
Zakharov and Shabat. 3e These authors3e postUlate an 
inversionlike integral equation without establishing 
explicitly the link with the associated differential sys­
tem. Moreover in their formal work they do not dis­
cuss the boundary conditions to be satisfied by the 
kernels of the integral equations in order that the 
formalism be correct. As we shall see here the dis­
cussion turns around the values of the constant term of 
the associated system and the sufficient conditions to 
be considered are far from being obvious. Ablowitz 
and Haberman3d have written down the nlpde which could 
be associated with a general linear system where the 
nonlinear parts of the nlpde can include triads, multi­
triads, quartets, multiquartets, cubic self-modal, 
self-self interactions, 0 0 o. However the derivation of 
the general IE as well as the explicit construction from 
it of these nlpde was missing. It is the aim of this 
paper to first derive the IE associated to a linear 
system and secondly, introducing, like in the 
Zakharov-Shabat theory, lpde for the kernels of the 
IE, to explicitly construct Ablowitz and Haberman's 
nlpde. 3d 

Let us consider the nXn linear system 

(AO(x) - irf>A - Q(x)) 1J;(x) =0, (1) 

lj! a column vector, III (x) >0, limx_oo(f"Lfli(U)]-! du) =+ co, 
the Ai being fixed numbers where p of them p ~ n have 
different values. 

For Ili = 1, n =3 and three different Ai, Kaup has3 

studied the analytical properties of the direct and in­
verse scattering problem. However3 it does not seem 
easy to extend his method for n> 3. Our aim in Sec. II 
is to obtain from straightforward algebraic methods an 
integral equation (IE) such that we can both generate a 
class of solutions and of potentials Q of (1). We shall 
not try to define (as it must be for a true inverse 
formalism) the data on the basis of which Q could be 
reconstructed, nor to get from these data the kernel 
of the IE. Thus we want to provide a potential frame­
work for an inversionlike procedure. Studying in Sec. II 
the validity of the procedure it appears convenient to 
associate to each kernel F~ of this IE the sign of the 
product AlA}. If this sign is negative then F} can be 
chosen square integrable whereas this is not possible 
if this sign is positive. Then either we put to zero these 
badly behaving kernels (reducing the case of recon­
structed potentials) or if we introduce such kernels we 
have to introduce the rules in order to avoid a break­
down of the formalism. 

The Zakharov-Shabat general formalism3c ignores 
these conditions on the kernels of the IE generating the 
potentials so that it is necessary to study how the 
associated nlpde can still be deduced when the correct 
boundary conditions on the F; are introduced. 

In Sec. III we consider a simplified case where the 
(p - 1) first Ai have a sign different from the remaining 
ones which are equal and we put fli = 1. In Sec, IlIA 
we construct explicitly the nlpde whose linear parts 
correspond to the operator constant a/2/- a/?x and in 
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Sec. III B to those corresponding to the constant a/at 
- a2 /ax2• In all these subsections we first consider the 
case where only the AiAj < 0 kernels F~ are present and 
we later study the modification of the formalism when 
the Ai Aj > 0 kernels F; are introduced. 

Before we generalize the IE in the matrix case, us­
ing algebraic methods, we recall how it works in the 
classical scalar case where it was previously done. 4 

Let us consider 

where fl is arbitrary. We associate (Qo and 1jJo are 
known) 

[a] 

[-Y+fl2(x)(~-Qo(x»)J 1jJO(x)=O, DO=fl2~ -Qo 

We postulate a representation of 1jJ (c is a constant), 

We put [b] into [a] and get {D=Do+2fl(d/dx) 
x [K(x, x) W 1(x)]} 

0=fl
2
(x)1jJ(x) [Qo-Q-(~ d~ R~~))J 

+ fa ~(t)[D(X)-Do(t)]R(x,t)dt. 
x 

If we find a kernel R such that 

(D(x) - Do(t» R(x, t) = 0, 

then 

Now if we define 

K(x,y)=F(x,y) + f F(s,y)K(x,s)W2(s)ds 

[b] 

[c] 

[d] 

[e] 

and assume (Do(x) - Do( y» F = 0 [f], then K, the solution 
of [e], satisfies [c]. It follows that if in [b] we choose 
R = K then the potential Q is given by [d]. We can con­
sider a = 0, "", . , , and we have to specify the boundary 
conditions on F and fl in order that all the derivations 
be correct. 

II. INVERSIONLIKE EQUATIONS 
A. Statement of the problem 

First we write down a representation of a set of 
solutions of the whole system as transforms of the 
reduced set of solutions when the "potential" is 
switched off. Secondly we put this representation into 
the differential system and we get (boundary conditions 
appear at this stage) that these transforms must satisfy 
well-defined nlpde. Thirdly, we guess an integral 
equation (IE) such that the solutions satisfy the above 
nlpde. In this way we get that the kernels of the IE 
must satisfy well-defined partial differential equations 
and also boundary conditions in order that all the 
derivations be correct. A more conventional mathemati­
cal presentation would be to reverse this order and 
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start from well specified assumptions on the kernels 
of the IE, but the insight of the method could be lost. 

Let us formally write a set of n functions [which we 
would like to be solutions of Eq. (1)] with the following 
representation, f 
1jJj=(vi)= (OljUj(x) + f~ fljl(y)uj(y)R{(x,Y)dY) , 

" 

B. nlpde satisfied by (K~ (x, y)) 

We assume the following boundary conditions, 

lim uj(y) R{ (X, y) = O. 
y- ~ 

Let us introduce the following lemma. 

(2) 

(3) 

Lemma: If the boundary conditions (3) are satisfied, 
then we get: 

(fll(x) a~ - i<PAI) f~ fljl(y)uj(y)Rf(x,y)dy 

" 

We assume that the 1jJj given by (2) are solutions of 
(1), 

(4) 

(5) 

we assume that the conditions of the lemma are satis­
fied, and taking into account Eq. (4), the result Eq. (5) 
is written down with scalar quantities 

(5') 

It follows that if the transforms {~} of Eq. (2) satisfy 
the nlpde 

oi.R~ =:6 Ri k (~ _ flt(X») 
J J m'j m j Am flm(x) , 

then the set of potentials {q;} of Eq. (1) 

q;~ (-~(~) +~)~, q:~O, 
are such that the lhs of Eq. (5') is zero. 

C. A conjecture of an inversion equation of Eq. (1) 1) 

Let us consider the following integral equation, 
F; =0 and 

(6) 

K}(x, y) =F;(x, y) + I;n f ~F~(S, y) Kj (x, s)fl;,I(S) ds. 
mti x 

(8) 
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We could also introduce the Fl '" ° kernels, however it 
will turn out that when we introduce the boundary condi­
tions, they must be zero. In fact as we shall see later, 
other kernels must also be zero. 

For each scalar kernel F~ we assume the following 
boundary condition, 

~i~F~(x, y) =: 0, p_~F; (s, y) K{(x, s) = ° 
and we require of course that the solution of Eq. (8) 
exists. 

(9) 

Property: If we assume that each kernel F~ satisfies 
both the boundary condition Eq. (9) and the partial 
differential equation 

I i ( L_ a ~ ( a) . OJFj = !ljlA) ax + AI ILl y) oy Fj(x,y) =0, 

then the solution of Eq. (8) satisfies the nlpde [Eq. 

(10) 

(6) ] 

IT'" ,,(~ -IJ.I(X») . A A 

0,I'l-} = L.J, () K'",Kj, Kj=Kj(x,x). 
m'} "m IJ. m x 

(6a) 

For the proof we apply OJ to both sides of Eq. (8), 

O~K} =.=O;F; - L; h F~Kj +L:jlJ.;'; F~ IJ.j(x) ~ Kjds 
m IJ. m x ax 

(11) 

Using relation (10), the rhs of Eq. (11) can be written 

"(-IJ.I(X) ~) Fi A "f _1 i om ';( ILm(X) + Am mKj+L;;f IJ.mFm jKjds, 

and comparing it with the solution of Eq. (8), result (6) 
follows. Let us define K(x,y)=vq(x, y)) and 

J(x, y) = wj(x, y», ] (s, y) = u:; (s, y) IJ.jl(s) e(s - x». 

Then Eq. (8) can be written in matrix form, 

K(x,y)=J(x,y)+ J.:~ ](s,y)K(x,s)ds. (8a) 

In conclusion, if the kernel] satisfies both Eqs. (9) 
and (10), if we substitute the solution K of Eq. (8) into 
the representation (2) ~ =K}, and further if condition 
(3) is satisfied, then Eq. (2) are solutions of our start­
ing partial differential system (1) and consequently 
Eq. (8) will be an associated IE. 

D. Conditions on the kernel 

We must provide the sufficient conditions on the 
kernel J in order that all the above derivations in sub­
sections IIB and Ile be correct. We must verify (3), (9), 

F; (x, y) - 0, K;(x, y) - 0, F;(s, y)K{{x, s) - 0, 
:y'" 010 y" co S .. 110 

and that the solution of the IE [Eq. (8)] exists. 

Each kernel F~ must satisfy the linear partial 
differential equation (10). However, if for each F~ 
we associate the product AlA}, we find two classes of 
different behaviors for these scalar kernels. 

Ai AJ < 0: We can have square integrable scalar kernels 
with a continuum as well as a discrete part, 
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F;=.= fdv;aj(v;)exPiv; (fX J.l j l(u)du- ~ f' ILjl(U)dU) 

(12a) 

or 

At A, > 0: For simplicity we consider discrete kernels: 
They are not square integrable, 

F;=~ a;.mexpv/.m (fX J.lj1du- ~~f"' ILj1dU) , v~,m>O. 
J 

(12c) 

Whereas in (12b), F~(x, y) - 0 either when x -co or 
y -co, on the contrary in (12c), F;(x,y) Y.-;; 0 and they 
behaved badly when x_co: F~(x,y)x.-:;;-oo. It follows that 
these kernels given by Eq. (12c) must be compensated 
by other kernels in order that both the solutions of 
the IE exist and the conditions of Eq. (9) hold. 

Let us call T( r) the set of (F~) kernels with AiAj > 0 
(AiAj < 0). With r are associated square integrable 
scalar kernels F; (x, y) whereas with r are associated 
badly behaving kernels as in Eq. (12c). Although our 
aim is not to perform a complete mathematical study of 
integral equations when square integrable kernels 
(J-) are mixed with badly behaved kernels (y+) we 
would like at least to know if we can introduce some of 
these FJ E J' without violating the conditions (3), (9) or 
the existence of the solution of Eq. (8). Our study will 
be at two levels. First we consider very simple exam­
ples where we can write the solutions of Eq. (8) in 
closed form, If we find a counterexample then we ex­
clude that case, if another example satisfies all the re­
quired properties, then we keep the possibility to intro­
duce such corresponding kernels, Secondly, from the 
iteration of the solution of Eq. (8) we try to find some 
more general criteria. 

1. Some very simple examples 

We assume that the kernels are discrete and degen­
erate of the most simple form F;(x, y) =.r;j(x) h;(y) given 
by (12b) and (12c). 

(i)Weconsidern=p=3, AI<O, A2 :O, A3 0, and 
J of the type 

l
o Fi ° 1 

J= Fr 0 F~ 

F1 0 0 

D -l 1~ -I 2h 1 d 100 

-1 .lJ 2 d A 1A 3A 2 
- - J.ll gl 2 S J.l2 g2 11 S - 3 2 I' 

x x 

All h~(s), g~(s) go to zero when s - 00, exceptd(s) _00, 
gi{s) -00. The solution Ki of Eq. (8) is written down. 
We must have both .d(s) ill<-,) !li1(s) - 0, ,d(s) hils) !l21(S) 

- 0, which are contradictory conditions. Thus if 
F; E:;+, then both FL Fi kernels cannot be present. 
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(ii) We put Fi =" 0, F~ ~ 0 in the example of (i) and the 
solutions are 

[

0 F~ o~ 
J= 0 0 F~ , 

F~ 0 0 

DK = [hHY) h~(y) 0 l [A~;'l' 
o h~(Y~ 1, 

1, 
Al ] 
A~~ A~, 

X 

[

trlo(Xl) 0 ] 
gi(X2) 

~(X3) 

D=1-A1A~A~. AlIg~(s), h~(s) go to zero when s_oo, 
except gHs) _00. If gHs)h~(s) Ilil - 0 when s _00, then 
the determinant D as well as all the solutions 10 exist, 
all 10 (x, y) - 0 all F;(s, y) K{(x, s) - O. Thus we can 

:II" 00 S .. 110 

introduce some F; E J+ but the expression (12c) alone is 
not sufficient to guarantee the validity of the formalism, 
such F~ kernels have to satisfy extra conditions linking 
for instance the parameters of (12b) and (12c). 

(iii)n=p=4, Al<O, A2<0, A3 < 0, A4> O. Let us still 
consider F; =g;(x)h;(y) and 

0 F!(x,y) 0 Fl(x,y) 

0 0 F~(x, y) 0 
}= F~(x, y) 0 0 0 

.Ff(x, y) 0 0 0 

All g; (s), h;(s) - 0 when s - 00 except gHs) - 00, 

g~ - 00, g~ _00. The Fredholm determinant of the solu­
tion of Eq. (8) contains the terms I; Ili l gyhi ds, 
I; Ilil gih~ ds, I; 1l3l ~h~ ds which must exist and this 
leads to contradictory conditions. Thus if FL F~, F1 
kernels belong to }+ they cannot all be present, one of 
them must be put equal to zero. 

(iv)Wecangoonwithn=p=5, Al<O, A2<0, 
A3 < 0, A4 < 0, A5 > 0 and assume FJ, FL Fl, .Ff are 
present. We find that they lead to inconsistent condi­
tions unless we put to zero one of them. 

Finally from these examples we have learned for 
T that we cannot have both F~ rnd;FL F;riF1 iall 
present, and more generally Fi! Fi~ ••• Fi~-l Fi~ all 
present. 

2. Iterations of the solutions of the IE 

Another way to find the constraints which must be 
satisfied by the kernels F; with AiAJ > 0, is to consider 
the iterations of the IE Eq. (8). We limit our discussion 
to discrete kernels of the type (12b), (12c), each de­
generate scalar kernel having only a finite number of 
terms: F~(x, y) = L:~1g;.m(x)htm(Y), mo finite. In order 
to determine the constraints, as we shall see, the first 
iteration plays a central role. On the other hand, can 
we hope to remove some of the above restrictions on 
F; E r by the introduction of more than one term in the 
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degenerate kernels? We rewrite the IE, Eq. (8) in the 
form 

00 

K(x,Y)=6 Kn(x,y), Ko=J, 
o 

K1 = f:oo 
](s,y)J(x, s)ds, 

(K1); = roo z:; ds F~(s, y)FJ (X, s) lI(s - x,) Il i1(s), 
_00 I 

(13) 

where, for the first iteration K1> we have still written 
down the ith row, jth column term. We must require 
that all these terms be integrable when s - 00 or 

Y (i,j), 6 F~(s,y)FJ(x, s) Ili l (s) -0 (13') 
1 S~IIO 

sufficiently quickly in order that the integral exists and 
we must check the compatibility of these conditions. 

In this way, we again find the above rules for F; E T. 
From the elements (i, i), (j, j) we get 
I; Il j1 F; (s, y) Ff{x, s) ds < 00, I XOO 

Il jlFf{s , y) F; (x, s) ds ~ 00 

which leads to contradictory conditions for the con­
sidered kernels (12c). 

On the other hand, even if we have more than one 
ter m for these kernels, they carry different x and y 
dependence and so do not appear to be cancellable non­
integrable terms. From the elements (i, k), (k, j), 
(j,i) we get that Ixoo IljlF~(s,y)Fk(X,s)ds< 00, 
Ixoo Ilj1F1(s, y) F~(x, s) ds < 00, I XOO Il -lFk(s, y) FZ(x, s) ds < 00, 

also lead to contradictory conditions if F;, FL FZ be­
long to J+ and are all present; and so on. 

Once those FJ E]+ which cannot be present have been 
eliminated, we have still to find the conditions for the 
remaining ones F; E T. From Eq. (13') we also get 
th.e constraints on the coefficients [.I;. m of these nonzero 
F~ E r by requiring that all (i, j) elements of Eq. (13) 
be integrable. In this way, we find that these ([.I;,m) 
corresponding to F;E]+ [Eq. (12c)] are restricted by 
the values of those ([.I~, m) corresponding to F; E ]-

[Eq. (12b)]. 

There is an interesting property that we get from the 
iteration of the IE. Let us first consider 

f
+OO = ds 

_00 

for v and w fixed. We remark that for degenerate 
kernels (with mo finite) as those considered in this 
section, the integrability conditions when s - 00 are 
both the same in Eq. (13') and Eq. (14). K n can be 
written 

f ](U1,y)](U2,Ul) du l' 0, f ](Ui+hUi) 

X](Ui+2,Ui+1) du i+1'" f ](Un,Un_l) j(x,un)dun• 

We see that the same integrability condition Eq. (13') 
or Eq. (14) is repeated in the general case and so we 
have no new condition in order that Kn exists. After the 
conditions which guarantee the existence of the itera­
tions of the IE are obtained we still have to look after 
the other conditions Eq. (3), (9). We remark that our 
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choice of the y dependence of the kernels F~ in Eq. 
(12b) and Eq. (12c) is such that limy~~J(s,y)=O, 
f~rther y appears in Kn(x,y) only from the first matrix 
J(UhY)' It follows thatKn(x,s)-O wheny-O. Simi­
larly the behavior of J(s, y)Kn(x, s) when s is large is 
given by J(s, y) ](Uh s) and so goes to zero when 
s _00. 

At the end we add some remarks concerning a more 
simple case Ili (x);: 1 in Eq. (1), which, for simplicity, 
will be considered in the next section. 

(i) This case is equivalent to Il i (x) ;: Il (x) because this 
last case by a change of variable x = r Il ~1 (u) du is re­
duced to the system (1) with .6. 0 = (OijO/aX). 

(ii) If in Eq. (1), Ij! becomes Ij! exp(i<pconst. x) then 
A - A + canst. I. 

(iii) If further, Ai = Ai for some (i, j) values, then 
from Eq. (7) we see that q~ = O. We will put Fj = 0 for 
the scalar kernels in Eq. (8) corresponding to the 
(i, j) values such that Ai = Aj . 

III. NLPDE FOR THE SOLUTIONS OF THE IE 
WHEN THE KERNELS SATISFY LPDE AND 
Pi == 1 IN Eq. (1) 

We consider Ai < 0, i= 1, ... ,p -1 and Ai =Ap > 0, 
i=p + 1, .•. ,0 where all the Ai' except the last one Ap , 

have the same sign. We rewrite J and K. 

(i) We can write K as a sum of two terms: KI where 
all the elements of the rows p, p + 1, ... ,n are zero and 
Kll where all the elements of the first row, the second 
row, ••. , the (p - 1)th row are zero, 

Kr = (~~t :-:.~~ Kll = (~"~) • o ) ~·o·:·Ki 
(ii) We can also write J as a sum of two terms: ]1 

where all the elements of the rows p, p + 1, •.. , n are 
zero and JII where all the elements of the first row, 
the second row, ••• , the (p - 1)th row are zero. 

Let us go on with our two component formulation 
KI and Kll , JI' Ju and define ]i, ]II when AiAi < 0, 
Jr,];r when AiAj > 0 (F;, F~, ••• ,Fl <\re not all present). 
We get: ' 

lii = 0 because the corresponding FJ have i ? p, j? P 

and so A;lAj = 1, 

JI="};+]i, fu=fiI' 

li Kr = JiKIl = JIIKII = (0), 

Cd FPoooFP e,1 ~_1(~ 

o : I, J tIl ,-~ 

o F~ 

FnoooF" \ /' 
1 p-l o 
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Ji= O
Ft '00 Fl 

p " 
• 0 

• 0 

, F;-1 0 0 0 ;~1 PO" 
The IE is written 

[
KIl [JIl J[Ji, Ji] [KI] 
KIlJ = tIlJ + Jih 0 KII' 

(8b) 

The method closely follows the one used for a second­
order eigenvalue problem. 2 We introduce a parameter 
t: t = t (x, y;i) and take the derivative with respect to t 
of the IE (8b), 

[ 
KI,tJ f [Ji Ji] fKrJ 
KIl,t - JIl 0 b'Il 

=: [Jr,t] + f[Ji,t fi,~ fKIJ. (15) 
lIl,t ]ll,t 0 J LKIl 

We will assume a LPDE with respect to the three 
variables (x, y; t) for J. Firstly we will get an integral 
equation for (KI, t, K II, t) and secondly add the integral 
equation where the derivatives with respect to x and" 
are present. In this way we will get nlpde with respect 
to the three variables (x, y; t) and at the end restrict to 
the case x=y. We putn=O in Sec. lIlA (1) and rein­
troduce it in III A (2). 

A. LPDE for] of the first order in a/ax + a/ay 

(1) n = 0: We define r and assume for the kernel, 

Cj 
y 

r-Iy;17i,t=OsJi, °s= a~ + c~ , 

JIl, t y;lr-1 = Os ]1I 

where Yt, .. , , Yp are fixed numbers whereas Y is an 
arbitrary value. 

In Appendix A, Sees. Ao-Al' we get an integral 
equation proportional to the IE, and comparing with 
Eq. (8b) we finally get 

(16) 

[
K r-Iy-I- (~ K + r(I - A-IX) _,0 K r-I + A-IX -'!2.A'~ 

I, t P ax I P 2y I P (1.1' ~J 

KIl, t r- I y;1 - DsKII 

(17) 
where KI =Kr(x, xL 
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TABLE I. Any P value, n?cp, i0=Kj(x,x;t). 

i-:sp-l, p-:sj-:sn 

i-:sp-l, j-:sp-1, i"'j 

In Table I for arbitrary p and n ~ p we write the nlpde 
corresponding to the "potentials" KJ (i '" j or not both i 
and j higher or equal to p). The evolution equations are 
written down for the two variables (x, y == x; t). 

In both Sees. III A and III B the method is similar. 
We put the ~ in three groups. In the first one, 
I0 E: Kn and we get directly the nlpde. In the second 
group, I0 E: KI but j ~ p and we fix our free parameter 
Y to be ± Yi' In both cases, the corresponding F; f. 0 and 
the linear part of the evolution equation is the same as 
that of F~. In the last group, with j -'S P - 1, we must 
consider a linear combination with the solution of the 
IE: If we restrict ourselves to x==y (Table I), OsI0 is 
replaced by %x(~), I0 by ~ and we see that the 
nonlinear part of the equations represent triad and 
multitriad interactions. 

(2) In Appendix A2 we introduce J; f. 0, with r- t n, tr-1 
- 0sJi==O, into the above formalism. We must have a 
relation A~ = 0, Af being defined in Table I, which trans­
forms the linear part of the K~ equations for i -'S P - 1, 
j -'S P - 1 into just 

B. LPDE for J of the second order in a/ax + a/ay 
(1) n;: 0: We consider the same r matrix as above in 

Eq. (16) but now the kernels 7 will satisfy lpde of the 
second order in ex, y), 

r-1y-1J- 02J- 02 (0 + 0) 2 
p I, t = s I, s = ax ay , 

(18) 

In, ty;l r-t = - 0; J n. 

In Appendix BI finally we get an integral equation which 
represents the IE multiplied by some constant and we 
deduce easily the solution: X = Y + z, 

X= (
K r-1y-1 _ (I _ A A -1)2 r a

2
KI r-1 + (0 )2K) 

I,t p P ~y Ap 1 
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I=P"-I 

R~KJ- E (~-1) 
I~i AI 

I~j 

+ (1 - 1\-1 Ap) r (.i.. Kl) r-1 

ay y=" 

+K1(1 - A-1Ap )(KI - r k r-1) ] (19) 

where 

o == .i.. + A A-I .i.. . 
Ap ax P oy 

X represents the linear part of the equations while Y 
and Z are the nonlinear parts. This is our fundamental 
result from which we can get nlpde whose linear part 
contains second order derivatives a2/ax2• We could, as 
in the previous section, consider any p and n values, 
however, for simplicity we make explicit in Appendix 
Bl only the cases p = 3 and 4 for any n ~ p. 

If we restrict ourselves to y =x (Table II), O! must 
be replaced by a2/ax 2

, Os by a/ax, and I{~ by ks. We 
see that the nonlinear terms contain cubic and triad 
interactions (of a type different than that of subsection 
A because derivatives of I(iJ are present). 

(2) In Appendix B2 we introduce fj+), with r-1 7;, tr-1 
- 0sJ;=O. We must have a relation YjYj(A/ _ Aj)2 
- YjYp(A/ - Ap)2 + Y JYp(AI - Ap)2 = ° which transforms the 
linear part of the K; equations for i -'S P - 1, j"'" P - 1 
into 

C. Representations of the scalar kernels F i 
J 

At the end of this section we want to make explicit 
the different representations of the scalar kernels 
F~ in subsections A and B, where they have to satisfy 
either Eq. (16) or Eq. (18). As usual F} can include 
a continuum part as well as a discrete part, 

F; = J dll;O'~(II;) expillj[x - A/A;ly + tt(l- :\Ajl)n yJ] (20a) 

or 

F; =~ 0';, m eXp7)II~, m[x - A; Ajly + Et(l - AiAjl)n Y~], II;, m :> O. 

(20b) 

Also here we always have A/ (or -\) == \ if i (or jJ > p. 

Section IlIA (l):n=l, E=+l, Y;=YiYpifF;EfJ .• 
yj=Yj"Yp if F;EJn, 17=-1. 
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TABLE II. n~p, P=3 and 4, ~=Kj(x,x;t). 

l=1,2, •.• ,p-1, j=p,p+1, ••• ,n 

p=3, l=1,2, l'=1,2, l';<l, j=3,4, ••• ,n, 

p=4, l=1,2,3, l'=1,2,3, l"=1,2,3, l;<l';<l";<l, j=4,5, ••• ,n 

(y,yJ-
t -It) /() =o\, 'f;t Krt /(!"X(~ -1) -0\. !J kl' Krt.X(~ -0 + R\" Rio·.x (r,: -1) or 

+ /(l:x/(l~ f_ or (~ -1\ +vI. (k -1) + 0) (h -1) kf [~K~ Kr- (~ - 1) + t K" ko, (~ - 0 l 1\1" I AI" AI' >rf.I' Am <r-p. I Al I 

HJ.Kr(~ -1) [~.":h(t -~ + ~K!KJ(~ -0]J 

Section III B (1): n = 2, if F~ E Ji, then E = + 1, 
Y~=YIYP' IfFJEJu, thenE=-1, Y~=YiYP' 11=-1. 

In Sec. III A (2) [or III B (2)] we only consider (20b) 
with 11 = + 1 and the other values are those in Sec. III A 
(1) [or IIIB (1)]. Further, the v~,m must be constrained 
(see Sec. II). For instance, f;J(s,y)J(x,s)ds must 
exist. Further, if F~ E J~, Y~ = YIY j , in Sec. III A (2), 
E=+1, in Sec. IIIB (2), E=+1 if i<j, E=-1 if i> j. 

IV. CONCLUSION 

In this paper, as well as in the preceding one, our 
motivation was to show that for a linear differential 
matrix case a purely algebraic method settled previous­
ly in the scalar case (see Ref. 4) could provide a deriva­
tion of the IE without any study of the complex eigenvalue 
plane. Due to the complexity of the general case we 
think that the interest of the method is more convincing 
here. In our approach, gOing from a three to a four 
order eigenvalue case is not an important complication 
whereas this is not so clear from Kaup' S4 results, 
working in the complex eigenvalue plane. The jump is 
really from two to three, not in the algebraic aspect of 
the problem, but due to the boundary conditions to be 
satisfied by the scalar kernels of the IE. 

We have seen that there are two classes of such 
kernels F~ (x, y) defined by the sign of their associated 
AIAj product. In the first class AIAj < 0, F~ goes to zero 
either when x or y goes to infinity and we recover all 
the nice properties of the previous case. 2 For the sec­
ond class (AlA} > 0), for simplicity and in order to see 
more clearly the drawbacks of the theory, we restrict 
our study to discrete kernels where they are going to 
zero when y - 00 but to infinity when x - 00. In the itera­
tion of the IE these diverging terms must be compen­
sated in order that the solution exist. We find that this 
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is not possible if in this class both F~, F{ are present 
or F~, F~, F: are present. Even if we satisfy these re­
quirements, the parameters of these kernels have to 
be constrained by parameters of other kernels belong­
ing to the same class or to the other class (AlAi < 0). 

For the derivation of the evolution equation we first 
consider only the kernels F~ of the first class (AiAj < 0) 
and we get the expected nlpde. Introducing the other 
kernels does not change the equations, but only the 
velocities of the corresponding (same i,) as F~) poten­
tials ~. 

This work complements the Ablowitz-Haberman3d 

paper because it provides both the IE and it constructs 
explicitly the nlpde's that these authors have written 
down [in particular for the nlpde which are studied in 
Sec. II B and which were not considered in Ref. 3 (c)]. 

Zakharov and Shabat3c have previously shown that 
purely algebraic method were sufficient to derive the 
nlpde and they got that the kernels of their integral 
equations have to satisfy lpde. However they postulate 
an inversionlike equation and the connection with the 
associated linear system is not expressed explicitly. In 
their formal work, no conditions about the {\} of the 
associated linear system appear whereas in the present 
work it is the main ingredient (and the main difficulty) 
of the formalism, concerning its validity or its 
breakdown. 

In a recent work Newell and Redekopp5 said that the 
breakdown of the Zakharov-Shabat theory is linked to 
the problem with more than one spatial dimension. 

Recently6a we have obtained a generalization of the IE, 
with more than one coordinate, in the case where in 
Eq. (1) the differential operator 0ijll J (x)(a lax) is re­
placed by the partial differential one {llj(a/axi)' How­
ever concerning the validity of the formalism we get the 

Henri Cornille 1942 



                                                                                                                                    

same discussion as we get here, depending upon whether 
AlA} < 0 or AlA} > 0, Moreover6b we have now shown in 
this multidimensional case that there exists another IE 
which avoids these limitations due to AlA} > 0 although 
another type of distinction occurs in both cases where 
the number of different coordinates is two or more than 
two. Unfortunately this other IE coincides with the pre­
vious one in the one coordinate case. 

APPENDIX A 

Ao: Properties of the solution of the IE when !l j'= 1, 
11.1 < 0 for i < p, 11.1 = Ap > 0 for i ;:. p. 

We establish a property, for the solution of Eq. (8), 
which will be useful later in the derivation of the nlpde. 
Let us define AI = All and 

OAI= a~ +A-1Aj a~' (OAIK)A=(OAjK(x,y»y=x. 

OA K=OA J+J(-I+A-1AI)k+J JOAIK, 
I I 

O~IK =O~I J +0 AI(](- I +A-1AI);<) 

+J(-I+A-IAI)(OAIK)A + J JOiIK. 

In particular, if 11., is the only positive eigenvalue, 
Eq. (Aol) can be written in a two-component formula­
tion, noting that OApJI = 0, OA,KII=OsKn, (1- A-IAp)Kn 
=0, we get 

Ap I Ap J I J I A 
(

0 K) (0 "]+) ("]+) 
Os Kn = Os Ju + JII (-1+ A-I Ap)KI 

Ii(Jj, Ji\(OAP Kr) 
+PJir, 0) Os Kn' 

where 

(Ao3) 

A1: Let us define 0AJ = (a/ax)J+A-I(a/ay)JA. From 
Eq, (10), 0 AJ = 0 and taking into account the structure 
of J, Eq, (16) can be rewritten: 

J - + A-h"]- 0 r- I -1"]- = (1- A-h )"]-I,,, ItpJ I, y =, Yp J I, t It, J I, ~, 

J II," + A;IFn,yA =0, 

At the rhs of Eq, (15) we substitute for Ji, t, J II, t the 
expressions written down in Eq, (All), In this way we 
get free terms plus an integral type term where J is 
the kernel, We get the following integral equation (here 
lI= 0), 
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iKI,t +ry/>(-1+Ao1A,)KI) 
LKII,t J 

=(. 0 ) _ ( 0 ) (_ 1+ A01Ap)rYpKI 
J II,t J II 

+f( 0 JI\(KI,t+rYp(-I+A-IA/»KI,y ,) (AI2) 
}u 0 J Ku,t 

which has a structure similar to the IE Eq, (Bb) except 
the presence of J II, t in the free terms, Multiplying Eq. 
(A12) at the right by r-ly;1 and subtracting Eq, (Ao2), 
due to our assumption Eq, (16), JII,ty;1r-1- 0sJII 
disappears, In this way we get an integral equation 
proportional to the IE and comparing with Eq, (Bb) 
we finally get Eq. (17), 

A2 : We introduce ]i+) ~O into the formalism. In 
supplement of Eq. (16) we assume 

r-1 "]+ r-I - 0 J+ JI,t - s I' 

Trying to get integral equations for quantities linked 
to (KI, t, Kn, t) with J as kernel, it turns out that the 
follOwing identity must be satisfied, 

rOj - A ];A-I) r + rYp(AnA-I- Ap l~A-I) 

- fjrYp(I - A-lAp) = (0), 

or 

YiY}(Aj - Ai) + YiYp (Ai - Ap) - YjYp(A j - Ap) = 0 

for (i row, j column) En. 
We get 

( 
KI, t - Ypr(- 1+ A-IAP)KI,y) 

KII,t 

-f[J~ Ji] [KI,t-ypr(-I+A-IAP)/(I,y] 

In 0 Kn,t 

(
li) A A - (I - A-IAp)(Kr - r I\IA-I) 
JII 

[ 
7+ y-Ir-I r(I - A-I A ) 7+ r- I - U 7+J :::::::: T I, t P - P T I r Y Ap J I 

I I • (A24) 
JII,ty;r- -Oslii 

Taking into account (A 21) and (A22) for the first row at 
the rhs of (A 24) and Eq. (16) for the second row, we get 
that this rhs is zero. It follows that the solution of (A 24) 
is the same as the corresponding one in Sec. III A (1), 
i. e., Eq. (17). Finally, taking into account (A22) in 
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Table I for KJ with i ~ P - 1, j ~ P - 1 we see that the 
linear part of the nlpde has the wanted form 
[ 

I A A 

(YiYJ)- KJ. t - kL]· 

APPENDIX B 

B I : Ji;: 0, Eq. (18) can be rewritten 

a2 
r-1y-1J- - (1 - A -I'll. )2 J-p I.t- P a;t I, 

Substituting at the rhs of Eq. (15) these expressions 
for Jt, we get 

(

KI.t - ryp(- 1 + A-1Ap)2 -!? K) 
H= , 

KII.t 

II - f(;" ~,) II~ v..) -(;.}-J+A, A-')'r,r 

x (KI.Jr=y+ (7 0\ 
II.X) 

(- 1 + A-I'll. )21' rv 
p p f\I' 

Equation (B I 2) has the same kernel J as the IE, how­
ever the free terms contain tn t and JII ", not present 
in the IE. We multiply Eq. (Biz') at the right by 
r-Iy;1 and add Eq. (Ao3). It follows that tIl. tr-Iyp 

+ O~Ju disappears in the free terms. In this way we 
have still in the free terms, one proportional to 0sJII 
which is eliminated by comparing with Eq. (Ao2). Final­
ly we get an integral equation which represents the IE 
multiplied by some constant and we deduce easily the 
solution Eqo (19). 

P = 3: In that case the kernels Ji and JIl are: 

Ji= 

Ji= 

and satisfy for P = 3 : 

[(YIYp)_1 :t + o~J F{ 

=[(YIYpt 1 - O;]F;=0, l=1,2, ••• ,p-1, j=p,p+l,n. 

It turns out that the eigenvalues Ai and the velocities Yi 
must be linked in such a way that 
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for p=3, l=l (l'= 2) or 2(l'=::1) which gives in fact 
only one independent relation. p =4: Ji and tII satisfy 
Eq. (Bl 1) for p =4 and are 

0 0 0 Fl FI 
n 0 

0 0 0 FI F2 

~ .. ~ .. ~C n 

Ji= 0 0 0 F! F3 , Ji= 
n 

0 FiF2F:; .. ' 

0 Fl FlO 
Fi o F~ 

Ji= Fi F~ 0 
= (0) in Appendix B I • 

0 
Equation (B I 3) must be satisfied for l = 1 (l' = 2 or 3), 
l=2 (1'=1 or 3), l=3 (l'=2 or 1), which gives three 
relations among the (Ai,Y,). 

B2: J~~O. We assume Eq. (18) and 

r-IJ+ r-I - E02 J+ (B21) I, t - s h 

where for F; E ti, E = + 1 if i < j and E = - 1 if i> j. In 
the following, for simplicity we restrict ourselves to 
E = + 1, i < j but the extension for the other case, i > j, 
is trivial. We get an integral equation for (KIt' KIlt) 
with J as kernel if • • 

r(A2 nil. -I A-I) r _ 2r A J~A-Ir _ rYp(I _ A-IAp)2 11.2 7iA-I A-I 

+ Ji(I - A-IAp)2 ryp = (0) 

or 

YiYj (Ai - ~",,2 - YiYp(Ai - Ap)2 + YJYp(A J - Ap)2 = O. (B22) 

We get 

We multiply (B23) at the left by (Ypr)_1 and add Eq. (Ao3), 
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Taking into account (B22), and Eq. (18), the rhs of 
(B24) is zero. It follows that we have the same solution 
of (Bt4) as that written down in Eq. (19). Finally, taking 
into account the relation (B22) we "get for the expressions 
written in Table II, 
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Random phase wave: A soluble non-Markovian system8
) 

R. L. Dewar 

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 
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The averaged propagator and the corresponding mass operator (non-Markovian particle-wave collision 
operator) of a particle being accelerated by a random potential are constructed explicitly in a model 
system. The model consists of an ensemble of monochromatic waves of random phase, such as arises in 
narrow-bandwidth plasma turbulence, and is particularly interesting as a system exhibiting strong 
trapping. An essential simplifying feature is that the propagator is evaluated in oscillation-center picture, 
which greatly simplifies the momentum-space operators occurring in the problem, and leads to a 
remarkable factorization of the mass operator. General analyticity and symmetry properties are derived 
using a projection-operator method, and verified for the solution of the model system. The nature of the 
memory exhibited by the mass operator is briefly examined. 

1. INTRODUCTION 

In a turbulent collisionless plasma a reasonable way 
to understand the particle dynamiCS is to model the 
plasma waves by an external random potential. Pois­
son's equation is applied only after all statistical aver­
ages have been taken. Although this is not fully self­
consistent, it greatly Simplifies the problem since only 
the Single-particle Hamiltonian need be used. 

The problem attacked in this paper is to find such a 
model system in which the Dyson equation for the aver­
aged single- particle propagator can be constructed, and 
which exhibits the effects of strong particle trapping. 
This phenomenon occurs in narrow bandwidth plasma 
turbulence. Such a system is particularly interesting 
because it is the case least amenable to perturbation 
theory. In the opposite limit of broad bandwidth, 
Dupree1 showed some time ago that the Dyson equation 
can be approximated by a Fokker- Planck equation. 
This can be improved upon somewhat by use of renor­
malized perturbation theory, the end result typically 
being the direct- interaction approximation, Z which puts 
in some non-Markovian behavior but does not treat 
particle trapping. Also there is strong evidence that 
even the renormalized perturbation series is diver­
gent. 3.4 There is thus a real need for an analytically 
soluble model of the type we propose to treat. 

There is also a need for general symmetry and ana­
lyticity results, such as those obtained by Forster5 in 
the theory of liquids. These properties provide a test 
for the reasonableness of approximate forms of the 
mass operator, or a check on the correctness of exact 
solutions. In this paper (Appendix) we derive analogous 
results for the random acceleration problem using the 
projection operator method of Weinstock, 6 and verify 
that our explicit solution satisfies these requirements 
(Sec, 7), 

The simple statistical ensemble which comprises 
our model is presented in Sec. 2, and in Sec. 3 an 
additional simplifying element is introduced: We make 

a)\Vork commenced in Department of Theoretical Physics. Re­
search School of Physical Sciences, The Australian National 
University. and completed at Princeton University under 
U. S. ERDA Contract EY-76-C-02-3073. 

a canonical transformation to oscillation-center vari­
ables. 7.8 This means that the propagator which we 
average is not precisely the propagator for the distri­
bution function in the usual variables, However, be­
cause the oscillation-center transformation preserves 
the qualitative nature of particle orbits, we believe that 
the oscillation-center propagator gives an equally valid 
"picture" of the statistical behavior of the system. The 
averaged oscillation-center propagator is calculated 
in Secs. 4 and 5. 

The great advantage of working in oscillation- center 
variables is that the momentum- space operators occur­
ring in the problem are Simplified from general 
Hilbert- space operators to 2 x 2 matrices. This enables 
us in Sec. 6 to work backwards from the known average 
propagator to the "mass operator" in the Dyson equa­
tion. An unexpected factorization of the mass operator 
into a simple momentum-space operator and a scalar 
memory function is found to occur. The general proper­
ties derived in the Appendix are verified in Sec. 7, 
where we also show the behavior of the memory function 
with respect to time delay. 

2. STATISTICAL MODEL 

The model consists of an ensemble of one-dimensional 
systems in each realization of which there is a single 
stationary electrostatic wave present whose phase a is 
random over the ensemble. This models narrow band­
width plasma turbulence as seen from a frame moving 
with the average phase velocity. Thus, the single­
particle Hamiltonians are of the form 

pZ 
H", =-2 - ecpo cos(kox - a), (1) 

m 

where e and m are the particle charge and mass, 
res pec lively, and ko and CPo are the wavenumber and 
amplitude (assumed to be the same in each realization). 
The average of any quantity cp", depending on a is 

- J2' da 
cp= <Cp>=Jo 271 cp",. (2) 

We can, following 0' Neil, 9 find the orbits governed 
by Hamiltonian (1) in terms of elliptic functions. Given 
the orbits the exact propagator U", (0: 0) can be written 
down, [Notationally, we closely follow an earlier 
paper, 7 with 16 denoting the unsubscripted argument list 
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(x,P, t) and 0 denoting the list (xo,Po, to)' J The average 
propagator U(01 0) can then be evaluated by applying 
Eq. (2), and is found to depend only on the differences 
x - Xo and t - to, so the spatial and temporal dependence 
can be removed by Fourier transformation. Unfortu­
nately, Uk,w(P,Po) remains a complicated function of 
the initial and final momenta, thus making inversion 
impractical and precluding the possibility of explicitly 
constructing a Dyson equation for the average propaga­
tor. In order to obtain a more tractable momentum­
space operator, we transform to an "oscillation-center" 
picture. 

3. OSCILLATION-CENTER PICTURE 

In Ref. 7 it was pointed out that the propagator 

G,,(01 0) = C", (Jej) U", (Jej 1 0) C~l(O), (3) 

with C'" a unitary linear operator acting on phase space 
functions, is dynamically equivalent to U", being the 
propagator in a new set of canonical variables: the 
oscillation-center coordinates. SpeCifically, we define 
the oscillation-center transformation to be such that 
the oscillation-center momentum of an untrapped 
particle is a constant of the motion, while for trapped 
particles we require the oscillation-center momentum 
to be a constant of the motion almost everywhere. 
Because this transformation is constructed as the 
limiting case of a family of diffeomorphisms from 
phase space onto itself, 8 the topology of the orbits is 
unchanged, Thus, the sign of the oscillation-center 
momentum of a trapped particle must reverse periodi­
cally in order to keep the orbit topologically circular, 
the reversals being caused by collisions with thin poten­
tial barriers located at koX = (2n + 1) 7T + Ct, with n an 
integer, In Ref. 8 it was shown that such a canonical 
transformation can indeed be constructed. The oscil­
lation-center orbit of a trapped particle in a particular 
realization of the ensemble is depicted in Fig. 1, while 
the graphs of position and momentum versus the dimen­
sionless time parameter T = (1/2) kovo(t - to) are shown 
in Fig. 2. Here Vo = oK/opo is the oscillation-center 
velocity, K being the new Hamiltonian. In terms of the 

p 

Po 

x 

FIG. 1. 
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energy-dependent bounce frequency Wb( Ipo 1 j e¢oIm, ko) 
we have 

(4) 

If we denote by ;,,(tIO) andp,,(tIO) the oscillation­
center position and momentum of a particle as a function 
of its initial position Xo and momentum Po at initial 
time to, the exact retarded propagator in the oscillation­
center picture is 

G",(01 0) = 5[x - x",(t I 0)]5[p - P",(t 10) ]8(t - to), (5) 

where 8(t) is the Heaviside step function. 

For untrapped particles we have p" =Po for all times. 
Furthermore, x", =xo +vo(t - to) is also independent of 
Ct, so that G", is just the unperturbed propagator for a 
particle with velocity Vo = oR/opo. As a corollary, the 
averaged propagator is also the unperturbed propagator. 
For trapped particles the propagator is not so trivial, 
and requires a detailed discussion of the orbit functions 
x", and Pet.' 

4. ORBIT FUNCTIONS (TRAPPED PARTICLES) 

In order to simplify the analytic representation of 
p(t I 0) and ~(t 1 0) in the trapping region, we define a 
phase {3 relative to the initial position by 

{3=7T+Ct-R oX o, modul027T, (6) 

It is clear that the integral over Ct in Eq. (2) can be 
replaced by the integral from 0 to 27T over (3. 

We also define a triangular waveform function, T(T), 
as depicted in Fig. 3(a), Both fj and d.:(/dt can now be 
written in terms of the derivative T', which is a square 
waveform. We have 

Po 
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dx T'( 1) dt=V O T-2:(3, 

(0 ) 
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( b) 
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(8) 

where, as before, Vo is 2wb(Po) sgn(Po)/ko' Integrating 
Eq. (8) we get 

(9) 

If we denote T(modulo 21T) by T'=T- 2n1T, with n an integer 
chosen so that T' is in the interval [0, 21T), then four 
cases may be distinguished: 

Case 1: O~T'<1T, O~i(3<T', 

P=-Po, x=xo+2kii1«(3-T'). 

Case 2: O~T'<1T, T'~1(3<1T, 

P =Po, x=xo +2kii1T'. 

Case 3: 1T~T'<21T, O,,;1(3<T'-1T, 

P=Po, x=xo+ 2kii1(T'-21T) 

Case 4: 1T~T'<21T, T'-1T~i(3<1T, 

P=-Po, x=xo +2kii1«(3- T/). 

It is convenient to define a sawtooth waveform function 
S(T) as depicted in Fig. 3(b). In Cases 2 and 3, x is 
then simply Xo + 2kii1S(T). 

5. AVERAGE PROPAGATOR 
It is now a simple matter to perform the integrations 

over (3 to calculate G(~ 10). First observe that in Cases 2 
and 3 the integration is trivial because the integrand is 
independent of (3 over the ranges indicated. In Cases 1 
and 4 the delta function containing x is removed by the 
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integration, bearing in mind that there is one and only 
one solution of the equation x = x when x is in the range 
such that 

\x-xo\ < 2kii1 IS(T)\o 

Outside this range there is no solution. Also observe 
that I ax/at31 = 2ko 1 in Cases 1 and 4. The result of the 
averaging is thus 

G(0 \ 0) = 1T-1T(T) 6(t - to)o[x - Xo - 2kolS (T)]O (p - Po) (10) 

+ (41T)-lk0 6(t- to)6(2ko
1 IS(T)\ -I x- xol)ol,p + Po)' 

Note that, for t> to, G is a periodic function of t, the 
initial state recurring every bounce period. There is 
no irreverSible phase mixing because Po defines a uni­
que bounce frequency in the oscillation-center picture 
(provided ko and CPo are the same in all realizations of 
the ensemble). 

Note that Eq. (10) is also valid for Po < 0, with T 

defined as in Eq. (4). Thus, Eq. (10) expresses the 
fact that there is a nonvanishing probability of transi­
tions only between the states with P = ± Ipo I. To make 
this "coupled level" picture more explicit, we introduce 
a matrix notation for G, and also choose to Fourier 
transform C at this time: 

Case A: Po=+ IPol 

C(01 0) = f I ~~~f exp[ik(x -Xo) - iw(t - to)] (lla) 

Xi[o(p - IPol )c::w (Ipo I) + o(p + IPol )C;:w<IPol)], 

Case B: Po = - I Po I 

G(01 0) = II f:~~ exp[ik(x - Xo) - iw(t - to)] 

Xi[o(p-IPollc;:w(IPol)+o(p+ IPollc;:w(IPol)]' (llb) 

where a factor i has been taken out of C~~ w (Ref. 7) to 
make it asymptotically equal to (w - kpVO)-lOp.o as 
Imw- + i oo • 

If 0 denotes + or -, the diagonal matrix elements 
are given by 

GOo = 1 
k.w W - akvo 

2 sin{ [1T(W + kvol]/2w h } sin{ [1T(W - k/'0)]/2w b} 

- w b 1T sin(1Tw/ wb)(w - ok/'0)2 , 
(12) 

while the off-diagonal matrix elements are given by 

-2w sin{[1T(w +kl'0)]/2wJsin{[1T(w -kl'0)];2w h} (13) 
- b 1Tsin(1Tw/w~)(w2 -Ih'~) 

Here vo denotes 2w/ ko, and w is to be interpreted as 
w + iO near zeros of the denominators. 

6. DYSON EQUATION 

It is shown in the Appendix that a mass operator ~ 
should exist such that C obeys the Dyson equation 

(at +Lj()c(010)+( dl!: (011)C(110)=0(010). (14) 
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For untrapped particles, '2: vanishes identically, while 
from Eq. (11) it is clear that '2: can couple only the 
momenta ±Po, so we can use a matrix representation 
for '2: similar to that for O. Using a representation for 
'2: precisely similar to Eq. (11) for 0 (including the 
factor of i), Eq. (14) becomes 

(G~?~l - ~ k,.) Gk, '" = I , (15) 

with I the unit 2 x2 matrix. Here Gk ,., is the matrix 

[

0++ o+-] G == k'''' 1<,,,, • 
ktw - -

G-+ G--
k.w k,w 

(16) 

The inverse unperturbed propagator is given by 

G(O)-l = [w - kvo 0 J 
" HoC' • 

o W + kvo 

(17) 

Given Gk,w from Eqs. (12) and (13) it is an easy mat­
ter to solve Eq. (15) for ~I<''''' We find that the momen­
tum-space operator part of ~k'W factorizes out in a 
very simple manner 

[1 -IJ 
:t 1<,'" =~I<'''' , 

-1 1 

with the scalar memory function '2:
k

,,,, being given by 

'2: - 2 w2 =..s 1::.:' n:.J.{~[ 17~(w=-:+,.:..:k~v:~)4'-Jl-=2.::,w1l!-"s-",in{~[ 17:...;..(w~-,:ck:..:..v~).£.]!-=2=w./U. 
1<,,,, - - b 172WF (17w!2w

b
) , (k!ko)) 

The function F in the denominator is defined by 

F(?; ) == sinU _ sin(?; + 17K) sin(?; -17K) 
,K 2?; ?;2_172~ 

In the denominator of Eq. (19), w is to be read as 
w +iO. 

7. PROPERTIES OF THE MASS OPERATOR 
A. Symmetries 

(18) 

(19) 

(20) 

The following general symmetries are readily veri­
fied for both 0",,,, and '2: k ,,,, , 

'2: k ,)Pl>P2) = - '2::k ,_", * (Pl>P2)' (21) 

This is just the reality condition, the change of sign 
being a consequence of the factor of i taken out in the 
definitions of Ok,,,, and '2: k,w [Eq. (11)]; 

(22) 

This is a consequence of symmetry (on average) under 
spatial inversion. Finally, symmetry under interchange 
of momenta 

can be derived from time reversal and spatial inver­
sion invariance. 

(23) 

There is also an antisymmetry of the matrix in Eq. 
(18) about a horizontal axis. This symmetry is a kind 
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of detailed balance and ensures conservation of prob­
ability at k = O. 

B. Causality 

We must show that '2:
k

,w obeys the causality condition 
of being an analytic function of w in the upper half 
plane. It suffices to show that F(?;, K) has no zeros if 
?; lies in the upper half plane. 

To prove this by the Nyquist technique, it is sufficient 
to show that the hodograph of F(?;, K) does not encircle 
the origin as I; traces out the contour shown in Fig. 4. 
The contour runs along the real axis from - R to + R, 
except for small semicircular sections passing above 
the real zeros of F(I;, K), and then the contour returns 
to (- R, 0) along a large semicircle in the upper half 
plane. 

For large 1 1;1 , F(?;, K) can be approximated by 
sin (2i;)!U , so that the hodographs of F(I;, K) and 
sin(2i;)!U must be essentially identical as I; traverses 
the large semicircle, looping the origin +n times (say). 
Each time the contour crosses two consecutive zeros 
on the real axis, the hodographs loop the origin -1 
times in the counter-clockwise sense. Since sin(2?;)!2?; 
has no zeros in the upper (or lower) half plane, there 
must be 2n zeros in the interval of the real axis (- R, 
R), so that the net number of times the hodograph en­
circles the ori,sin is - n + n = O. To show that F(I;, K) 
also has no zero" in the upper half I; plane then, all we 
need do is to show that it has the same n'Jmber (2n) of 
real zeros as sin(2?;)/21; in any large interval (- R,R) 
of the real axis, so that its hodograph also loops the 
origin - n + 11 = 0 times. 

By graphing the two terms which subtract to form 
F(I;, I(), it is found that the number of crossings of the 
two graphs (zeros of F) is the same as the number of 
zeros of sin(2i;)/21; in a long interval on the real line. 
This is found to hold for all K, thus proving that the 
causality condition is satisfied by '2:

k
,,,,. In the Appendix 

it is shown that this is a general property, following 
from the anti-self-adjointness of the Liouville operator. 

C. Spectral representation 

As shown in the AppendLx, anti-self-adjointness of 
the Liouville operator implies the existence of the 
spectral repres entation5 

Im/; 

Re I; 

FIG. 4. 
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'" r~'W,(pl'P2) 
• '" W - Wi +zO ' 

where the damping matrix r
k

•
W 

is a positive semide­
finite operator. That is, 

J J dPl dNI!*(Pl)rk'W(Pl,P2)'¥(P2)??- 0 

for arbitrary functions 'II. 

(24) 

(25) 

In the 2 x2 matrix representation of Eq. (11), we have 

[ 

1 
r =r k.w k~w 

-1 
(26) 

where the scalar damping function r k.w is given by 

r =~ [sin
2

(1TK) o(w) 
".w 1T F(O, K) 

t sin(t j + 1TK) sin(t j - 1TK) 

- i=~'" t joF(tp K)/O tj 
(27) 

where Ko=. k/ ko and the tj are the zeros of F(t, K). The 
matrix part of Eq. (26) is positive-semidefinite [with 
a null vector (1,1)1, so one simply has to show that 
the scalar r".w is greater than or equal to O. One finds 
that the coefficients of the 0 functions are always 
positive, so the requirement is satisfied. 

Note that r ".", does not go to zero as I wi - co, the 
asympt.Jtic behavior being a "row of 0 functions" with 
weights alternating between two different positive con­
stants. 

D. Temporal behavior 

Inverting the Fourier transform of the memory 
function, we find its temporal behavior 

6" ([) = j: ~~ i 6". w exp(- iwt) 

f '" dw 
= e(t) .'" 21T r".w exp(- iwt). (28) 

The function 6,,(t) is graphed in Fig. 5 for the case 
k = 0.2 ko• It is seen that the asymptotic behavior of 
r k. w at large w leads to the occurrence of a 0 function 
spike at time t = 0, as if there were a component of the 
spectrum with zero autocorrelation time. However, 
these spikes recur periodically at later times, and 

o 2rr 3rr T 

FIG. 5. 
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there is also a piecewise-continuous aperiodic com­
ponent . 

8. DISCUSSION 

The two most striking features of the oScillation­
center mass operator are the separation of the mass 
operator into a product of a scalar memory function 
and a momentum-space transition probability matrix, 
and the occu rrence of 0 functions in the temporal be­
havior of 6

k 
(t). Because the Hamiltonian system is in­

tegrable in each realization of the ensemble, the only 
randomness in the problem is that introduced by the 
ensemble. In more typical (and less tractable) cases 
the particle motion itself is highly unpredictable in 
most regions of phase space, thus damping the quasi­
periodic tail of '.:, k (I). 

It is hoped that similar simplifications will be 
achieved when the oscillation-center transformation is 
applied to such nonintegrable systems. To treat such 
problems, it will be necessary to develop a convergent 
perturbation theory for the Hamilton-Jacobi equation 
for the Lie generating function. 8 

It might be taken as an objection to the use of the 
oscillation-center transformation to simplify the prop­
agator that we end up calculating the propagator for the 
average oscillation-center distribution function rather 
than that for the averag'e of the true distribution func­
tion. However, because the nature of the transforma­
tion is such that the discrepancy between the oscillation­
center orbit and the corresponding exact orbit has no 
secular component, the longtime behavior of the two 
propagators must be similar. This WOuld be especially 
true in systems where there are no trapped particles 
since the ratio of the distance between the exact and 
oscillation-center positions to the displacement from 
the initial point tends to zero at large times in such 
systems. The average distribution functions do differ 
by a nonsecular component related to the "fake dif­
fusion" occurring in the conventional approach, 10 but 
the information contained in this component can be ob­
tained from the known transformation operator CO!, 
which gives the coherent response of the plasma to the 
potential. It is in fact an advantage of the oscillation­
center approach that this coherent response is separated 
from the secular behavior. 
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APPENDIX 

In order to apply the projection operator6 technique, 
we define operators on the space of functions of x, I), 
and IY. The inner product in this space is defined by 

, . " 21T 

(l, g)=i i dxrij) I ilQ/:CY,p)g",(x,I). (All 
n 

We :lOW define the averaging operator A such that 

(f, Ag) 0= f jtxdj) 12
' d(1!a 2' (~~~ f~ (x, P)K",. (x, j), 

(A2) 
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for allfand g. Clearly, A is a self-adjoint projection 
operator. We also define the complementary proj ector 
B by 

B'=l-A. (A3) 

For time-independent systems, such as the one 
studied in this paper, the equation for the Fourier­
transformed exact propagator G", (regarded as an 
operator in the space defined in this Appendix) is 

(w+iL)G",+iLG",=l, (A4) 

where I is the average part LK of the Liouville opera­
tor and L is the residual part Lj(. Provided..!he sp'!-.,ce 
of functions of x and p is suitably defined, iL and iL are 
self-adjoint operators. 

By multiplying Eq. (A4) on the left by A and on the 
ri~ht by A ,!nd B we obtain two coupled equations for 
AGA and BGA. Eliminating the latter we have 

(w + ii)AG",A + AL(w + {L + iBLB)-1LAG.,A =01, (A5) 

where we have used the fact that ALA = O. 

It is clearly consistent with Eq. (2) to define Ck ,., by 

21TO (k - k')Gk,.,(p,p') = (k,p I cwl k' ,p'), (A6) 

where the kets I k' ,p') are defined componentwise by 

<x ,p, Q I k' ,p') '= (21T)-1/2 exp(ik' x)o(P - p'). (A 7) 

Note thatAlk,p) =Ik,p). Thus, Eq. (A5) becomes 

(w - kv)Gk,,,,(p,p') - J dp" 'Z",.,(p,p")G",,)p" ,p') 

= o(p - p'), 

where v'= aR/ap and 
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(A8) 

21TO(k- k')'Z",.,(P,p') 

= (k,pl it(w + iL + iBLB'rlLI k' ,p'}, 

it (= - L) being the adjoint of L. 

(A9) 

Since L + BLB is anti-self-adjoint, it can be written 
in the spectral representationll 

L + BIB = i 1.: AdE(A), 

where the projection operators E(A) are the spectral 
family of L + BLB, and the integral runs over real A. 
In this representation Eq. (A9) becomes 

21TO(k - k')"L-k,.,(p,p') 

=/00 dA d(k,pl LtE(A)LI k' ,p' )/dA 
_00 w - A+ iO 

Thus the existence of Eq. (24) is guaranteed, and 
hence so is the causality property. Also, from the 
definition of E(A)11 it is clear that 'Zk'w is a positive 
semidefinite operator. 
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Quantum generalization of Kolmogorov entropy 
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The framework of quantum probability theory is employed in the investigation cf ergodic properties of 
quantum dynamical systems. In the process certain basic notions of quantum information theory are 
developed. These are used to demonstrate the existence of a quantum Kolmogorov entropy which has the 
same operational significance as in classical theory. The notion of a quantum K -system is also introduced. 

INTRODUCTION 

The ergodic theory of classical dynamical systems 
has been successfully developed in the last 45 years1- S 

with a view to provide a rigorous mathematical founda­
tion for classical statistical mechanics, In particular 
the entropy theory of dynamical systems initiated by 
Kolmogorov7 has shown how classical dynamical systems 
can exhibit some sort of a stochastic behavior, In re­
cent years, there have been several investigations 
(Refs. 8--11, and references cited therein) on a non­
commutative generalization of classical ergodic theory 
to cover situations that are encountered in quantum 
statistical mechanics, In all these investigations the 
Abelian algebra of the random variables of classical 
theory is replaced by a non-Abelian algebra-usually 
assumed to be either a C*-algebra or a von Neumann 
algebra, The problem of generalizing the notion of 
Kolmogorov (or dynamical) entropy to a noncommuta­
tive von Neumann algebra framework has been investi­
gated recently by Emch (Ref, 12 and references cited 
therein) and Connes and St6rmer, 13 Emch has also in­
troduced the notion of a generalized (or non-Abelian) 
K-flow and has shown that every nonsingular generalized 
K-flow l2 has a strictly positive dynamical entropy. 

The notion of Kolmogorov entropy in claSSical theory 
is intimately connected with the statistical uncertainty 
in the outcome of an experiment (with a finite number 
of outcomes) at time t, when the results of the same 
experiment performed at times {I - T, t - 2 T, t - 3 T, •• , } 

for some T > 0 are all assumed to be known. In extending 
such a notion meaningfully to quantum theory, it is 
therefore necessary to employ an operational framework 
in which statistical relations between successive ob­
servations can be discussed, However, in both the C*­
algebra and von Neumann algebra approaches (in the form 
they are usually employed in quantum statistical mech­
anics 14) the observables of the theory are assoc iated 
with the self-adjoint elements of the algebra, and no 
specification is made concerning the measurement 
transformations associated with their observation. In 
such a framework it is not possible to discuss the 
probability connections between the elements of a se­
quence of experiments performed on a system, Hence 
the von Neumann algebra model is not suitable for a 
generalization of the notion of Kolmogorov entropy into 
quantum theory in a physically meaningful way, More­
over, the concept of Kolmogorov entropy (in classical 
theory) arose out of the application of information theory 
to the study of dynamical systems; the need for adopting 
an operational approach in constructing a quantum in-

formation theory has been clearly demonstrated recent­
ly by Ingarden. 16,17 

Recent investigations1S- 22 have shown that the appro­
priate framework for analyzing the statistical relations 
among successive observations in quantum theory is 
that of a quantum probability theory in which the space 
of events is identified with the set of all operations (or 
measurement transformations of the conventional 
theory), and the observables or random variables are 
defined as operation valued measures on their value 
spaces (See Sec, I), In the present investigation 1N 

shall employ the framework of quantum probability 
theory to obtain a quantum generalizatioll of tile IlOtion 
of Kol'11Ogor01! enlyopy in such a way that it also relains 
its operational significance, For this, we first introduce 
the notion of a quantum dynamical system in Sec. 1, 
and also consider quantum analogs of concepts like 
ergodicity and mixing for such a system. In Sec, 2, we 
shall develop certain basic notions of quantum informa­
tion theory, These are used in Sec, 3 for demonstrating 
the existence of a quantum Kolmogorov entropy and also 
for the introduction of the concept of a quantum f{­
system. 

1. QUANTUM DYNAMICAL SYSTEMS 

In Ref, 20 we arrived at the following framework of 
quantum probability theory which is essentially a 
generalization of the approach developed by Davies and 
Lewis18 and Edwards 19 into a probabilistic scheme: 

(a) The set of all operations (or el'cnls of the theory) 
is the set 0 = L j(1/) of all positive elements of the unit 
ball of L (\1), the set of all bounded linear mappings of 
a complete base normed space \1 (with a base f{ for the 
closed generating cone Tl+) into itself, Then the set::'; of 
all the maximal elements in () [under the partial order 
induced in 0 by the cone L +(V) closed under the strong 
topology 1 is a uniformly closed convex semigroup, 

(b) The set of all slales (or mcasllrcs) is the set of 
all linear functionals 

fJ.:(! - [0, 11, 
which are continuous in the strong topology on () and 
satisfy 

(1,1) 

(ij) fJ.(~A) = fJ.(A), for all ~ t=:::'; and.A c (.I, 

(c) An obsCYl'lliJlc (or a random I'aria/ilc) with value 
space (5, B (5)) (usually a standard Borel space) is a 
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map X;P(,)) -0, which satisfies the following 
requ irements; 

(0 X(,)) EC2;; (1. 3) 

(ii) If {E;} is any disjoint sequence of elements of 
peS), then LjX(E j ) converges to an element of 0 in the 
strong operator topology and 

X (l, E/) =0X(E/), 
i 

(1. 4) 

The follow ing remarks may be made on the interpre­
tation of the above formalism: Statistical phys ical 
theories are usually formulated as probabilitistic 
structures founded on a "logic of experimentally veri­
fiable propos itions," Each operation typically repre­
sents a "measurement transformation" which complete­
ly characterizes the experimental procedure associated 
with some experimentally verifiable proposition, In 
fact, with each A E 0, we can associate a linear positive 
mapping of the set of all unnormalized states [io e, , 
strongly continuous positive linear functionals on 0 
which satisfy (1.2)1 into itself, by the rule kll - /-L I, 
where 

/-L'(E) = /-L(BA) 

for all B EO, 

(1. 5) 

The conjllnction A/IB of two operations, A,B,EO is 
defined by the equation 

AAB=BA, (L 6) 

and corresponds to the experimental procedure in which 
the system is subjected to the sequence {A, B} of experi­
mental procedures corresponding to A and B, in that 
order, If A, BE 0 are such that A + B E 0 also, then A 
and B are said to be mutually disjoint and their dis­
junction AI! B is defined by 

AI!B=A+B, (1, 7) 

A I! B corresponds in some sense to a "fusing" or physi­
cal adjoining of the experimental procedures corre­
sponding to A, B. 0 contains a unique null element 
which may be denoted as 8; however, the set 2; of 
maximal elements in 0 contains (in general) several 
elements apart from the identity operation I. 

From (10 3) it is clear that each maximal operation 
corresponds to an experimentally verifiable proposi­
tion of the form: "In an experiment to measure the 
observable X with value space (5,B(5) the outcome is 
found to lie in 5, " Apart from the noncommutativity of 
the conjunction (1. 6), it is the fact fhat the set z; of 
maximal operations is nontrivial (i. e., 2; *{I}), which 
cOllstitutes the most important nonclassical feature of 
quantum probabilitl' theory-and gives rise to the so­
called "quantum interference of probabilities. ,,20,22 

Given an Observable X with value space (5,8(5» and 
EEl] (S) and a state 11, 1l(X(E) is the probability 
that when a measurement of X is made on (an ensemble 
of identical copies of) a system in state 11, the outcome 
will be found to lie in K It can easily be shown that 
E - 11 (X(E) defines a probability measure on (5,B(S) 
for each state /-L, A more Significant result proven by 
Davies and Lewis18 is that if the value spaces 
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(51)8(')1)), (S2,I](S2)) of two observables XI> X 2 are 
standard Borel spaces, then there exists a unique 
observable X on the product Borel space 
(51 x S2, 8 (51 X 52) such that for any El E I] (SI) and 
E2 E 8 (52) 

X(EI x E2) =Xl (El ) 1\X2(E2) , (1. 8) 

i. e., the observable X is such that its observation 
corresponds to the composite observation; XI followed 
by X 2, With each element p of the base K of the com­
plete base normed space V, we can uniquely associate 
a state /-L p on 0, via the identification 

(1, 9) 

for all A EO, However, there does not seem to exist any 
characterization of the set of all states on 0, even in 
the canonical model associated with cOI11'entional 
quantum mechanics where V is chosen to be the Banach 
space T sU-/) of all self-adjoint t1'ace class operators on 
a separable Hilbert space H, The base K, in this case, 
would be the set of all denSity operators on H. 

The assumption (a) that the set of events 0 is to be 
identif ied with the whole of L j(V) may not in general be 
quite justified. It would definitely be more realistiC to 
stipulate that the set of events 0 has the structure 

O=Li(V) nc (1,10) 

where C is a Banach subalgebra of L (V), Vk will now 
introduce an abstract mathematical framework which 
seems to be the appropriate generalization of the theor­
ies of the type (1. 10). The generalization in-
volved is quite similar to the one performed when one 
passes from an algebra of operators on a Hilbert space 
into a C*-algebra, 

(A) The set 0 of all operations (L e" the quantum 
event space) is the set of all positive elements Uj in 
the unit ball of an ordered Banach algebra U with iden­
tity I and a closed cone U·. 2; is the uniformly closed 
convex set of all the maximal elements of 0 in the 
partial order on 0 induced by U', 

(B), (e) Same as (b) and (c) above, with the only 
exception being that the requirements of continuity (and 
convergence) under the strong operator topology are 
replaced, in each case, by the reqUirements of con­
tinuity (and convergence) under the norm topOlogy, 

When 0 is taken to be L f(V) and we adopt the frame­
work (A)-(e) instead of (a)-Ic), the only difference 
will be that the class of allowed states will now be en­
hanced and the class of observables will be correspond­
ingly reduced in such a way that each state continues to 
induce a probability measure on the value space of every 
observable, Before one seriously considers the frame­
work (A)- (e) as a prototype for all operational 
approaches to quantum theory, it is necessary to 
strengthen the requirements (A)- (e) in such a way that 
every representation of the theory will have properties 
akin to (a)- (c), and possibly with a further restriction 
that V is of type T s (N)' In other wo rds it is nec es sary 
to supplement the reqUirements (A)- (e) in such a way 
that every representation of 0 resembles the space of 
operations associated with the canonical model de-
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scribed above. We shall not discuss this question here 
as all the results which are obtained in this paper on 
the basis of the framework (a)- (c), will continue to hold 
in the abstract framework (A)- (C) also, provided in 
each definition and theorem we substitute "uniform 
topology" for the "strong operator topology." 

After this discussion of the basic framework we shall 
employ, we proceed to the definition of a quantum dy­
namical system. We denote by AutO the group of auto­
morphisms of 0 which are also continuous in the strong 
operator topology: L e., 0 E:: AutO is a one-to-one iso­
metry of 0 onto itself which is continuous in the strong 
operator topology and satisfies 

91(A/IB) = 91 (A) /\91(B), 

'91(A + B) = 91 (A) + 91 (B). 

(1011) 

A quantum dynamical system shall be an aggregate 
(0, Il, 91 (R», where 0 is a quantum event space, Il is a 
state on 0, and t - 91t is a homomorphism of the real 
line R into AutO such that the conditions (QD1) and (QD2) 
are satisfied; 

(QDl) 
llo91t=ll, 

for all t E R, where 

(Il 0 91t)(A) = Il (91tA ), 

forallAEO; 

(QD2) The function t - 91t(A) is continuous in the 
strong operator topology on O. 

(1.13) 

(10 14) 

It is probably necessary to supplement the require­
ments (QD1) and (QD2) by a condition of the following 

(QD3) For all A,BEO, the function t-Il(A/\91~) 
is continuous. 

However, (QD3) does not play any role in our 
investigations. 

We now introduce a class of states W(Il) associated 
with a given state Il, and which corresponds in some 
sense to the class of measures absolutely continuous 
with respect to a given measure in claSSical probability 
theory. The set W(Il) is also analogous to the family of 
normal states in the GNS representation associated with 
a given state in the C*-algebra framework. 8-11,23 W(Il) 
is composed of all those states Il' which are given by 

for all BE 0, where A E 0 is such that Il (A);< O. We 
should note that unlike in classical theory, Il (B) = 0 
need not imply 1l'(B) =0 for a ll'EW(Il). 

In the rest of this section we shall briefly indicate 
how some of the basic notions of claSSical ergodic 
theory can be extended so as to be applicable for quan­
tum dynamical systems. 

L Ergodicity: ((), Il, 91(R) shall be said to be ergodic 
iff 
ll'EW(Il) and ll'o91t=1l for all tER 

(1.16) 
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We have the following immediate consequence: 

Lemma 1.1: If (0, Il, 91(R» is ergodic and A E 0 is an 
invariant operation (i. e., 910 =A for all t E R), then 

Il (A /\B) = Il (A) Il (B), 

for all B EO. 

(10 17) 

2. Asymptotic Independence: A dynamical system 
(0, Il, 91(R) is said to be asymptotically independent, 
if for any two random variables Xl, X 2, the sequence of 
random variables {91-t X 1,X2} becomes statistically in­
dependent in the limit t - 00; i. e., if (51. B (51) and 
(52, B (52)) are the corresponding value spaces, we have 
the following relation which follows from the definition 
of statistical independence in quantum theory22: 

lim III (91-~1 (E l )/\X2(E2) 
t~ 00 

(10 18) 

for all El E /3 (51) and E2 E 8 (52)' This is also equivalent 
to the requirement 

lim III (91-01 /\ A z) - Il (At) /J. (91-t~1 /\ A z) 1=0, (1. 19) 
t~ 00 

for all Ai> A2 E 0 and for every ~1 E 2; such that AI -'S ~1' 

3. Asymptotic noninterference: A dynamical system 
(0, Il, 91(R» is said to be asymptotically noninterfering 
iff 

limJ.l(91_t~/\ A) = Il(A), (1. 20) 
t~ 00 

for all A EO and ~ E 2;. We have referred to (1. 20) as a 
noninterference property because it implies that an act 
of measurement performed on a system in state Il does 
not show up features of the "interference of probabil­
ities" provided the measurement was made in the in­
finite past- i. e., a measurement on a system in state 
Il in the infinite past becomes equivalent to a "classi­
cal" or noninterfering measurement. Thus the notion 
of asymptotic noninterference is quite similar to the 
asymptotic commutation properties ("weak asymptotic 
Abelian-ness," etc.) which have been widely em­
ployed11,Z3 in theories of C*-dynamical systems in show­
ing approach to equilibrium. 

Both the notions of asymptotic independence and 
asymptotic noninterference are important for under­
standing the physical significance of the notion of mixing 
in quantum theory. 

4. Mixing: A dynamical system (0, Il, 91(R» is said 
to be mixing iff 

limll (91-0/\ B) = Il(A)/J.(B), (1. 21) 
t~ 00 

for all A,BEO. 

The importance of the notion of mixing stems from the 
following approach (or "return") to equilibrium property 
exhibited by a mixing system: 

Lemma 1. 2: Let (0, Il, 91 (R) be a dynamical system. 
Then the following are equivalent: 

(i) (0, Il, 91(R» is mixing; 

(ii) limll'o91t=ll, for allll'Ew(Il); (1.22) 
t- "" 
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(iii) ((), /l, <p(R) is asymptotically independent and 
asymptotically noninterfering, 

It can be easily seen that mixing implies ergodicity, 
It may also be noted that the definitions we have pro­
vided above are more or less direct generalizations of 
the corresponding classical definitions in the following 
form24 : 

(a) Ergodicity ¢='" the only invariant measure ab­
solutely continuous with respect to /l is /l itself, 

(b) Mixing ¢=> any measure absolutely continuous 
with respect to /l converges to /l for infinite times, 

In claSSical theory the notions of mixing and asymp­
totic independence coinc ide as every classical measure­
ment is noninterfering, 

2. ELEMENTS OF QUANTUM INFORMATION 
THEORY 

The central concept in this section is that of a parti­
tion which formalizes the notion of an experiment with a 
finite number of outcomes, After all, most of the real­
istic experiments are of this type and, in addition, the 
way the various outcomes are labelled is not particu­
larly relevent for studying the statistical relations be­
tween such experiments, Hence a partition may be de­
fined as the set of events assoc iated with an experiment 
with a finite number of outcomes in the following way" 
A partition Q in a quantum event space () is a finite 
collection {Ai 11 ~ i '" III} (Ill t:c Z+) of nonnull elements 
AI 'CO, such that 

m 

~"= 6A, 'C 2:. (2,1) 
i=1 

Thus, given a partition a = {Ai 11 ~ i '" m}, we can asso­
ciate with it a random variable X"' with value spac e 
{I, 2, 0", III} such that 

(2,2) 

All other random variables associated with a can be 
reduced to X 0: by relabelling their value spaces as 
{1, 2, ' , , , Ill}. 

If a is a partition, we shall denote by ~" the partition 
{~o:} with just the single element ~O:'C:0, We refer to 
such single element partitions as trivial partitions, If 
a ={A i 11 ~ i ~ m} and {3 ={Bj [ 1 ~ j ~ n} are partitions, we 
shall write Q '" {3, whenever {3 can be subdivided into 
mutually disj oint subsets {3~ = {B~r [ 1 '" r '" nlk } (1 ~ k ~ n1 ), 

such that 
mk 

Ak= 6 B kn 
r.l 

for each 1 '" k ~ 111, We also introduce the weaker relation 
a'" 1J.f3, for each state /l on 0, if instead of (2,3) we have 

/l(A k ) = ~ /l(Bkr ), (2,4) 
T.l 

for each 1 ~ k ~ In, If a '" f3, then Q ~ 1J.f3 for each state 
/l on 0, 

If a ={A! 11 ~i ~ m} and f3={B j 11 ~j "'n} are partitions, 
then a V f3 denotes the partition 

(2.5) 

i. e" a V ~ corresponds to the compos ite experiment 
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- a followed by f3, In quantum theory partitions a V f3 
and f3v Q are in general different, Also we do not have 
Q ~ a V {3 or {3 ~ a V (3 in generaL However, for any par­
titions a, f3, y, 0, we have the following relations: 

(2,6a) 

(2,6b) 

a ~ y and f3 ~ ° ='" a V f3 '" y V 0; (2,6c) 

(2,6d) 

for all states /l on 0, 

Hereafter we shall work in a fixed quantum probabili­
ty space (0, Ill, L e" a quantum event space () together 
with a state /l on iL We would like to introduce the no­
tion of the entropy H(a) of a partition a = {A! 11 '" i '" m} 
as a function of the probabilities {/l(A,)}, H(a) should be 
a measure of the average amount of information gained 
by finding the outcome of (an experiment X 0: corre­
sponding to) a-or, equivalently, a measure of the 
average uncertainty in the outcome of a, For this, we 
will have to determine the corresponding numerical 
function H (Pl,P2,'" ,Pm), (for each m;, 1) of a set of 
numbers Pi = /l(A i );, 0, which satisfy I:::"jp! = 1. This 
function should clearly have the following properties 
(QI1) and (QI2); 

(QIl) H (PI, P2, ' , , ,Pm) takes its largest value for 
Pk = 1/m (1 '" k ~ m), L e" the entropy H(a) of an experi­
ment a is maximum when each of its outcomes are 
equally likely to occur, 

(QI2) H(PIo P2,'" ,Pm, O)=H(h,P2,'" ,Pm)' 

Another reasonable requirement on the entropy is the 
following: If the experiment !3={BJ ll "'j ~n} is per­
formed after the experiment a ={Alll ~ i ~ m} and 
{a, f3} are statistically independent, then the uncertainty 
H(av' (3) in the compound experiment "f3 followed by a" 

should be the sum of the uncertainty H(a) in the outcome 
of a and the uncertainty H(~ 0: V (3) in the outcome of ex­
periment {3 when the system is subjected to the se­
quence of experiments {a. f3}, It may be recalled22 that 
when a system in state /l is subjected to the sequence 
of experiments {a, {3}, the physically meaningful prob­
ability pr{ B j} for the outcome 1 '" j '" n in the experiment 
f3 is given by 

(2,7a) 

Also, the experiments a, f3 may be said to be statisti­
cally independent when the system in state /l is sub­
jected to the sequence of experiments {a, f3} iff22 

(2,7b) 

for all 1 "'i ~ Ill, 1 "'j ~n, If we now write /l(A!)=p, and 
/l(~O:J\BJ)=qJand if (2,7b) is satisfied, then we have 

H(aV (3) = H(PlqloPlq2, '" ,Pmqn), 

H(~o: V (3) =H(qloq2",' ,qn)' 

Thus the above reqUirement of the additivity of uncer­
tainty (or information) for statistically independent ex-
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periments can be expressed in the following form: 

(QI3) H(P1Q1>P1Q2"o"P .. q .. ) 

= H(P1> P2, ' • , , Pm) + H(qb q2, ' , , ,q n), 

form,n~I, 

If we now add to (QIl), (QI2) , (QI3) another require­
ment that, for each In ~ 1, H(Pt, P2, ' , , ,Pm) be continuous 
in all its arguments, then the theorem of Khunchin25 

shows that, for each 111, H(Pt> P2, 000 ,Pm) should be of 
the form 

m 

H(P1> P2,' , , ,Pm) = - A 0 Pllogpl> 
1.1 

where A is a positive constant, 

The preceding discussion shows that a reasonable 
measure of the average uncertainty of (the outcome of 
an experiment corresponding to) a partition 0' 

={A l ll d -'Sm} is given by the entropy H(a) if we define 
H(a) by the relation 

.. 
H(a)=- 0J.L(A f )logJ.L(AI ), (2.8) 

1=1 

where all logarithms are taken to base 2 and 0, logO = 0, 
A Similar argument shows that if a = {Alii -'S i -'S m} 
and i3={BJ ll-'Sj -'Sm} are any two partitions, then a 
reasonable measure of the average conditional uncer­
tainty in the outcome of the experiment 13 given the 
outcome of experiment Q, when a system in state J.L is, 
subjected to the sequence of experiments {a, i3}, is 
given by the conditional entropy H«(31 a) defined as 
follows: 

(2.9) 
x log J.L (AI A B /) ] 

J.L(A I ) • 

Since the conditional probabilities satisfy the relation22 

O-'SJ.L(A I J\B j )/J.L(A, )-'SI, (2.10) 

H(13/a) given by Eq. (2.9) is well defined. 

We now collect all the elementary properties of the 
entropy and conditional entropy in the following 
theorem: 

Theorem 2. 1: Let (0, J.L) be a quantum probability 
space and a={A, ll-'Si-'Sm}, f3={B j ll-'Sj-'Sn}, andy 
= {Ck 11 -'S k -'S r} be partitions. Then we have the following 
properties: 

(i) O=H(~,,)-'SH(a)-'Slogm, 

H(a)=logm <=> J.L(A , ) = l/m, 

for all 1 -'S i -'S m; 

(ii) a -'S (3=> a -'S 1'13=> H(a) -% H(~); 

(iii) H(ctV~a)=H(a), 

H(~"V f3)=H(13! ~,,); 

(iv) H(a V f3) =H(a) + H(13/ a), 

H(13V 1'/ a) = H(13/ a) + H(y/ a V 13); 
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(2. 11 a) 

(2.11 b) 

(2,12) 

(2,13a) 

(2,13b) 

(2,14a) 

(2. 14b) 

(v) H(a) -'SH(a V 13), 

-%H(a V I3); 

(vi) H(13/ a) -% H(13 V ,/ a), 

H(y/a V f3) -'SH({3Vy/a); 

(vii) H(a V f3) -'SH(a)+H(~"V f3), 

(2,15a) 

(2. 15b) 

(2. 16a) 

(2. 16b) 

(2, 17) 

where the equality holds iff the experiments (corre­
sponding to) a and 13 are statistically independent when a 
system in state J.L is subjected to the sequence of experi­
ments {a, 13}; 

(viii) H(y/ a V 13) -'S H(y/ a V ~B); 

(ix) H(y/ a V f3)es H(yh" V f3); 

(x) H({3V y/ a) -% H(13/o) + H(~B V 1'/ a), 

(2. 18) 

(2.19) 

(2,20) 

Proof: (i)- (iv); These follow immediately from the 
definitions (2,8), (2,9), 

(v)-(vi): These follow directly from (iv), except for 
the first inequality [H(13/ a) -'S H(13/ L.)] in (2. 15b), which 
follows from (vii) which will be proved below, 

(vii): To prove this, we make use of the well-known 
inequality 

.. ..p.., r 
'0 urfJlog..:..J.i.. ~ 0, 
b1 j.1 p,q j 

(2.21) 

where {rf}} are such that, r ,j ~ 0, 

A. n n m 
o 6 r lj =1, and Pf = 6r,J , qJ= 0r l ,. 
{.1 ,.1 1=1 1.1 

Also, in (2. 21), the equality holds iff 

(2.22) 

for all 1-% i -'S m, 1 -'Sj -'S n, If we now set rlJ = J.L(A,J\ B I ), 

then we obtain 

PI=J.L(A;) and qJ=J.L(~aJ\BI)' 

If we substitute these in (2.21), (2.22), then (vii) follows 
immediately once the definition of statistical indepen­
dence as given by (2.7b) is employed, 

(viii): We shall first derive an inequality that is 
essential for the proof of (viii) and (ix). 

Let {q/~ 11 -%j -% n, 1 -'S k -'S r} be a set of numbers which 
satisfy qJk~ 0, L:j'=IL:~=lqJk=1 and let PI=L:~.tqlk' Then as 
a consequence of the Jensen's inequality, 1 we have 

= tp, t (~Qlk) log P 
1.1 h.1 I J 

-'S - t (tqlh) log (tqJk) • (2,23) 
h.1 1.1 1.1 

If we now substitute 

qJk = J.L (A,A BJA Ck)/ J.L(A I ) 

in (2.23), we obtain 
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"" _ ~ 11 (A/\ e/\ C,,) 
k~1 11 (AI) 

I 
I1(Af/\~/lI\C,,) 

x og fJ.(AI) (2024) 

If we multiply both sides of (2024) by 11 (Ai) and sum 
over i from 1 to m, then we obtain (viii) immediatelyo 

(ix): To prove thiS, we shall again make use of the 
inequality (20 23) with n= >no If we substitute 

q,,,= 11 {A,/\B;/\ C,,)/fJ.{~"'I\EI) 

in (2. 23), then we obtain 

f'. t 11(A,/\B/'C,,) fJ.(Af/\EfI\C,,) 
-J~k=1 11(~"'/\Bi) log I1(A/\BI ) 

""_ t 11{~""\Bi/\C,,) 
11.1 11 {I:,"'/\ B t ) 

11 (~"'/\ Bi /\ C,,) 
xlog 11 {E,Ci/\ B

i
) 

(2.25) 

By multiplying both sides of (2025) by 11{~"'/\BI) and 
summing over i from 1 to n, we are led to (iX) directlyo 

(x): This follows easily from (iv) and (viii) once we 
notice that we always have 

(2 0 26) 

The results contained in the above theorem can be 
easily generalized to cases where more number of par­
titions are involved. For the sake of completeness we 
just note the following result: 

Corollary 202: Let (0,11) be a quantum probability 
space and ai' a2, • 0 • ,an, (31)~' 0 0 0 , (3m be partitionso 
Then we have the following properties (xi)-{xv): 

(xi) H{al II a2 Vo •• II an) 

? H{CtI V 0 0 0 V al-1 V ~ Cil V ai+1 V 0 0 0 V O!n), 

for alll ""i ""n; 

(xii) H(O!I II 0!2 V 0 .. V O!n) 

(2027) 

"" H{O!I) + H{!:, Cil V (2) + 0 0 0 + H{~ Cil V 0 0 0 V ~ "'"..1 V O!n), 

(2.28) 

"" H{~ "I V (31 V ~ "'2 V ~2 V 0 0 • V E. Cir V (3r) 

+ H{O!I II E.1lj V 0!2 V E.1l2 v ar V ~8r); 

(xiii) H{f31 V f32 V 0 0 0 V (3m I O!I V 0!2 II 0 0 0 II O!n) 

?H{{31 V 0 00 V {31-1 V E.a, V f3/+1 V 0 0 0 (3m/ O!I V • 0 0 II O!n), 

for all 1 "" j ~ n; 

(xiv) H{f31 V (32 V 0 0 • V (3m/ 0'1 V 0!2 II 0 0 0 Van) 

~ H«(31 II 0 0 0 V (3m/ 0!1 V 0 0 0 V O!I-l V ~CiJ+l V 0 0 0 V O!n), 
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(2029) 

(2.30) 

(2.31) 

for alll~j""n; 

(xv) H«(31 V 0 • 0 V (3,,./ O!I V 0 0 0 II O!n) 

"" H{(3/ al V 0 0 0 V O!n) + H(i=.1lj V i3?/ O!I V 0 0 0 V O!n) + 0' 0 

+ H(~1lj II 0 0 0 V ~8m-1 II (3m/ (lI1 V 0 0 0 V O!n)o (2.32) 

We shall now make a few remarks on the interpreta­
tion of some of the above properties. The properties 
(i)- (xv) differ from their classical counterparts mainly 
in: 

(a) the appearance of the partitions i=.Ci' i=.B' etc. in 
most of these relations and: 

(b) the fact that we have to pay attention to the order 
in which partitions are combined under the operation V 0 

In fact, if we replace all the partitions ~ "" ~B' etco 
by the partition {I} with just the identity operation, then 
the relations 0)- (xv) w ill be reduced to the correspond­
ing classical relationso ThiS, of course, is equivalent 
to stipulating that the corresponding experiments 
O! = {A f }, {3={{3f}, etco, are "classical" (or "non inter­
fering") in the sense that AI ~ I, B J "" I, etc. 

The appearance of the partitions ~'" i=.s, etc o, in most 
of (i)- (xv) is essentially due to the "quantum interfer­
ence of probabilitieso " To see this more clearly, let 
us consider, for example, the relation H({3/a) ""H({3/i=.,,). 
• H«(3/ a) is the uncertainty in the outcome of (3, given 
the outcome of experiment o!, when the system in state 
11 is subjected to the sequence of experiments {(lI, (3}0 It 
is therefore very reasonable that H«(3/ O!) is less than or 
equal to H({3/I:,,,,), the uncertainty in the outcome of (3 
when the system in state 11 is subjected to the same se­
quence of experiments {a, (3}o However, we do not have 
the classical relation H({3/ a) ~ H(f3), because H(f3) is the 
uncertainty in the outcome of (3 when the system in state 
11 is subjected to the experiment (3; Leo, H«(3) refers to 
a totally different experimental situation as compared 
to H«(3/ a) or H(f3h ,,) and hence H({3) is entirely different 
from (and in general unrelated to) H«(3/I:,,,,)-unless 0' 

turns out to be "class ical" L eo, I:, '" = 1), as noted above, 
Therefore, the notion of the uncertainty (or the infor­
mation contained) in the outcome of an experiment (like 
the notion of statistical independence22 ) becomes mean­
ingful iff the sequence of experiments performed on the 
system is also specifiedo 

The preceding discussion has been essentially con­
cerned with the notion of entropy (or uncertainty in the 
outcome) of a random variable-that too with a finite 
value spaceo From the point of view of information 
theory, a more interesting quantity would be 

1(0', (3) = H{O!) + H(I:,,, V (3) - H(O! V (3), (20 33) 

which may be called as the mutual (or correlation) in­
formation between (lI and (3, From (2. 17) we have the 
relation 

I(a, (3)? 00 (2 0 34) 

From (2.33) and (2034) it is also clear that I(O!, (3) can 
bf! interpreted as the information conveyed about the 
outcome of 0' by the outcome of (3 (which is also the 
information conveyed about the outcome of (3 by the 
outcome of n'), when a system in state 11 is subjected 
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to the sequence of experiments {a, ,B}o This is quite 
different from 1({3, 0') given by 

1({3, 0') == H({3) + H(~B V a) - H(a v (3), 

which is also nonnegative and refers to the mutual 
information between a and {3 when a system in state II 
is subjected to the sequence of eXperiments {{3, a}o 

Another nonclassical property of the quantum mutual 
information is that 1(0, a) and H(o:) are, in general, 
quite d iff erent because the measure ments in quantum 
theory a're not constrained to be repeatable o 18,20 

Finally we would like to note that the notion of mutual 
information 1(0, m can be directly generalized to the 
case of random variables whose value spaces are not 
finiteo In fact, we can define the mutual information 
I(X,1') of any two random variables X and Y with 
standard Borel value spaces (St. IS' (SI», (S2, B (S2) in the 
same way as in classical theory, 26 by making use of the 
joint probability measure given by (1 0 8) as follows: 

leX, 1') ==Sup '6 II (X(EI)i\ Y(Fj » 
I, J 

(2.36) 

where the supremum is taken over all paritions {Ei} of 
SI and {F j } of S20 Again, it is clear that I(X, Y) and 
I(Y,X) are not equal and actually refer to different ex­
perimental situations. 

3. QUANTUM KOLMOGOROV ENTROPY 

We now make use of the information theoretic con­
cepts outlined in Seco 2, for the study of quantum dy­
namical systemso If (0, II, <p(R» is a quantum dynamical 
system and a == {AI 11 .,; i .,; n} is a partition, then, for 
each t, the partition <pta is given by 

<Pta={<ptAI!l.,;i.,;m}, (3.1) 

and corresponds to the same experiment as a, but con­
ducted at a "time" t later 0 It is easy to see that we have 
the following relations for all partitions a, and any time 
"to" 

H(<ptO:) = H(a); 

H(<ptf3/ <pta) = H(f3/ aL 

(3.4) 

OJr first objective will be to arrive at a reasonable 
measure for the "entropy of <Pt (t> 0) with respect to 
the partition a"-a quantity which shall be denoted as 
h(a, <Pt)o Motivated by the classical theory, we would 
like to define h(o:, <Pt) as the limit as n - <X) (if it exists), 
of the average uncertainty in the outcome of ()' at t = 0, 
given the outcomes of the experiments 
{<P-ntOi, <P-(n-l1 t a, 0 0 0 ,<P_ta} when the system in state Jl 
has been subjected to the infinite sequence of experi­
ments too, <P-rtO:, <p-(r-ilta, 0 0 0' <P-ta, a}, i. eo, when 
the experiment 0: has been repeated at interval t, from 
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the infinite past, Before discussing the question as to 
whether the above limit exists, it is necessary to first 
restrict ourselves to the class of all those experiments 
(with a finite number of outcomes) for which such an 
infinite repetetion does make sense in our theoryo We 
are thus led to the following notion of an admissible 
partition: a is said to be an admissible partition of a 
dynanical system (0, Jl, <p(R) iff 

~';:t=lim[<p_(r+nlt~" v <P-(r+n_llt~"Vo 0 0 V <P-rt~al (3 0 6) 

exists for all t> 0, where the right- hand side is re­
quired to converge in the strong operator topology 
(when we replace ~" by ~"). Since we have that <PT (for 
each TEO.!?) is continuous in the strong operator topology 
on (), we have the relations 

(3.7a) 

(3.7c) 

We are now in a position to show that h(a, <Pt) exists for 
every admissible partition 0 0 

Theorem 3.1: Let a be an admissible partition of a 
dynamical system (0, Jl, <p(R). Then the entropy 
71(0, <Pt) of <Pt with respect to partition a, given by 

Il(a, <Pt) =limH(ah';;tv <P-(n-llt aV 0 0 0'1 <P-t a), (3.8) 

exists for all t" 00 Also 

Il(o, <Pt) = lim! H(~':: t V <P-(n-llt Ci V 00 oj a) 
,.... 00 n 

for all t'- 00 

Proof: Let us write 

sn= H(o:/~':: tv <P_(n_l)ta V 0 0 0 V <P-t Ci)o 

Then Sn? 0 and from (2.31), (3 0 2) and (307), we obtain 

sn= H(o:h"o,+I, tv ~~-nt" V <P _(n_l)ta V 0 0 0 V <P-t a ) 

?H(a/e:,,+I,tV<p_ntaV<p_(n_ilt a vo.o,j<pCitCi)=Sn+lo 
(3011) 

Thus {sn} is a monotonic decreasing sequence of non­
negative numbers and hence 

h(a, <Pt) =lim s n 

existso Now if we set 

hn=H(~,::tv <P-(n-l) to '10 0 0'1 a), 

then, because of (3 0 3), (3 0 4), and (3 07), we have the 
relation 

In addition, since 

h - H(t I, tv 0') - H(O'/tl, t) - S 1- s" - SOl - 1> 

we obtain 

hn= tsko 
k.l 

Since we have already shown that {sn} tends to 
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h(CY, CPt) as n - 00, we just have to apply Cesaro's mean 
convergence theorem, I to obtain from (3. 12b) the re­
quired result 

h(()', CPt) = lim 1. H(~':; tv CP-<n-Ilt a V, , ,Va). 
n-~n 

From the definition (3.8), it is clear that for any 
admissible partition a, h(a, CPt) has the interpretation 
(which we sought for in the first place) of being the mean 
uncertainty in the outcome of a given the outcomes of 
the infinite sequence of experiments {, , , , CP-rtO', 
CP_(r_l)ta, ... , CP_t a}. From (3.9), we see that h(a, CPt) is 
also equal to 

l' 1 [InfOrmatiOn gained when the outcomes Of] 
,:..r;:n experiments {CP.(n-!) to', CP.(n-2lta" •• , a} 

are spec ified 

when the system in state 11 is subjected to the infinite 
sequence of experiments {.", CP-rta, cP_< r-Ilta, .,., a}, 
In other words, h(a, CPt) is the rate of average gain of 
information per single observation, when the experi­
ment is repeated at interval "t" from the infinite past, 

As a matter of fact, our definition of the entropy 
h(a, CPt) of CPt with respect to partition Q' coincides with 
the notion of the entropy of a quantum information source 
which in this case is composed of the "stationary se­
quence" {CPmt a 1m = 0, ± 1, ± 2,. , , } of random variables 
CPmta with a finite value space (i, e" a finite set of 
alphabets)-strictly speaking, we should replace the 
partition a by a corresponding random variable 
X" [cL (2.2)J, The successive "outputs" from our in­
formation source are nothing but the outcomes of the 
experiment a performed at intervals of time "t", The 
source entropy h(a, CPt) can be easily calculated (to 
obtain results analogous to the classical theory16,25) in 
the following cases~ 

1, Bernoulli source: For each r;' 1 and any integer 
m, the sequence of random variables {cpmta, CP(m+llta, 
.,., CP(m+Tlt ('i. } is statistically independent22 when the 
system in state 11 is subjected to the infinite sequence 
of experiments {"" CP_nta, CP_(n_1lt a , •• • }. We therefore 
have, for each r;' 1, 

r 

= 6H(~~' tv (/l-(m-Ilt a ) 
m.1 

(3,13) 

where the last step follows from (3,3), (3,4), and (3.7), 

Hence the entropy of Bernoulli source is given by the 
relation 

(3,14) 

2. Markov source: Here the infinite sequence of ran­
dom variables {. . , , CP-rtO', CP-<r-Ilt a, .. J forms a quantum 
Mar.kov chain, 22 It can then be shown that for all r;' 2 

H(a/e;; tv CP-(r-I) a V,., V (/l-t a ) 

(3, 15) 

Hence the entropy of a Markov source is given by the 
relation 
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(3,16) 

In the following theorem, we shall collect some of the 
properties of the entropy h(a, CPt) of CPt with respect to 
an admissible partition a of a general dynamical system, 

Theorem 3,2: Let a, i3 be admisSible partitions of a 
dynamical system ((), 11, cp(R), Then the following prop­
erties (i)- (v) are valid for each t> 0: 

1 
(i) h(a, CPt) = lim - H(~~ t va V CPta v, , ,V cp(n-1l tal; 

n"~ n (3,17) 

(ii) (l/n)H(~~ tv cp_(n-Iltav •• , Va) decreases mono­
tonically to the limit h(a, CPt). As a consequence 

h(a, CPt)"; H(~~ tVa); 

(iii) If a .,; (3, then 

h(a, CPt)"; h({3, CPt); 

(3, 18) 

(3, 19) 

(iv) If a v {3 is admissible, then a V ~~ and ~"v {3 are 
also admisSible and 

h(a V (3, CPt)"; h(a V ~B' CPt) + h(~a V (3, CPt); 

(v) If m is a pos itive integer, then 

h(cp_(m_!)taV CP_(m_2ltav", V a, CPmt) 

(3,20) 

(3,21) 

Proof: (i) This follows directly from (3,3), (3,4), 
and (3,7), 

(ii) From (3.10)- (3,12) we have 

>-- nSn+1 

=n(h".1 - hn), 

Therefore 

h/n;, h".t/(n + 1), 

for all n;, 1, which is the desired result, 

(3,22) 

(iii) If a.,; {3, then it is easy to see that ~ a = ~B' Hence 
we have from (2, 6c) and (3,2b) that 

from which (3,19) can be deduced easily by making 
use of (2,12) and (3.9). 

(iv) Since we have 

(3,23) 

and a V (3 is given to be admissible, we can easily show 
that 

tr, t _ tr, t _ tr, t 
"avl~- "laV~- ""VB' 

If in the inequality (2,29), we take 

a - t r , t 
1- ""VB' 

a/ = CP-(r-"!> ta, 

for i> 1 and f3, = CP-(r-J) tf3 for all j, then we get 

M.D. Srinivas 
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H(~'0BI/ CP_(r_j)t(a V {3)V ••• V (a V 13) 

'" H(~~'",tVB 1/ CP-(r-t) t(~ '" 1/ {3) V 0 •• 1/ (~'" 1/ 13) 

+ H(~~5eB v CP_(r_llt(c;V ~8)V." v (a V ~B»' 

from which (3.20) follows immediately. 

(v) If we write 

then 

(3.26) 

(3.27) 

(3.28) 

and a simple calculation shows that I' is ale,) admissible 
and that 

We therefore have 

h(y, CPmt) 

=ll'm~H(t~mtv' (f) v v V) s, "1'-(n-1)rntY' •• CP-mtY I' 
rt"*oc l1 

= mJz(a, CPt)' 

which is the required result 

(3. 29) 

(3.30) 

The properties (i), (ii), (iii), and (v) are also valid 
in class ical theory. The property (iv) is different from 
the corresponding class ical relation Jz(a v 13, CPt) 
,,; h (a, CPt) + h(J3, CPt). Another interesting nonclassical 
feature is that h(a, CPt) need not be zero even if CPt re­
duces to the identity transformation. 

From our interpretation of h(a, CPt) outlined earlier, 
it is clear that if for some admissible partition a we 
have h(a, CPt) > 0, then our dynamical system exhibits 
some form of "stochastic behavior" as even after 
mfinite repetitions of the experiment a (at fixed interval 
"t"), the outcome of the next experiment is still un­
certain. In order to obtain a criterion as to when such a 
stochastic behavior may be expected, we shall now 
introduce the notion of the quantum Kolmogorov entropy. 

Let (Q, fl, cp(R) be a quantum dynamical system. For 
each t> 0, the entropy h(cpt) of t he automorphism CPt is 
defined as 

(3.31) 

where the supremum is taken over all the admissible 
partitions Ci of the dynamical system (0, Il, cp(R). The 
(quantum) Kolmogorov entropy h(cp) of the dynamical 
system (O,).J., cp(R) can now be defined as 

h(cp) = sup(l/t)h(cpt). (3.32) 
t>o 

For classical dynamical systems, it is a well-known 
result due to Abramow2 that (l/t)h(cpt) is a constant so 
that h(cp) =h(CP1)' At present we do not know whether a 
similar result can be obtained for quantum dynamical 
systems under the conditions (QD1)- (QD3) of Sec. 10 

Finally, we may note that the notion of a K-system 
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can also be introduced in a manner analogous to the one 
employed in classical theory. As we have already 
remarked, a positive value for the Kolmogorov entropy 
h(cp) indicates that the dynamical system exhibits 
stochastic behavior. A far more stronger statistical 
property is the following K-property: A dynamical sys­
tem (0, ).J.,CP(R» is said to be a K-system iff, for each 
t> 0 and every nontrivial admissible partition a, 

h(a, CPt) > D. (3.33) 

Thus a K-system, has the property of "essential ran­
domness" such that no experiment (with a finite number 
of outcomes) on the system is deterministic27 in the 
sense that no matter how many times any given experi­
ment is performed on the system (at any fixed interval 
of time t) the outcome of the next experiment is still 
uncertain. 
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Spherical delta functions and multipole expansions 
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The Cartesian Taylor series for an analytic function in three dimensions is rewritten as a series of solid 
spherical harmonics. A discussion of the distribution theory definition of singular spherical harmonics is 
given, which leads to a definition of spherical delta functions. An expansion of source functions in 
spherical delta functions and their derivatives leads to multipole expansions for the fields which, in a 
distribution theory sense, are valid everywhere. 

1. SPHERICAL HARMONICS 

The solid spherical harmonics in three dimensions 
are a complete set of linearly independent polynomial 
solutions of Laplace's equation. Those of dep;ree 1 may 
be written 

Y I m (x) = 2- 1 (ll )-1 [ (21 + 1)/ 4rr V!2[ (! - in) t (I + Ill) ! 111 2 t\~ m (x), 

(1 ) 
where the \lim are coefficients in the expansion 

+t 

[rl(XI - iX2) + 2X3 - t(Xj + iXzlll = L tmW1m(x). (2) 
m=-l 

An equation of this form is given in HeL 1, p. 248. By 
applying the Laplacian operator to the left-hand side of 
(2) one sees that the lI'lm satisfy Laplace's equation. 
The numerical coefficient in (1) is chosen so that the 
Y1m(x) will have convenient properties. These proper­
ties are summarized in the Condon and Shortley phase 
convention. 2 A sketch of the connection between this 
definition of Y 1m and the usual one is given in Appendix 
A. 

The surface spherical harmonics Ytm (8, ch) '" Y lm (x) 
differ from Y 1m (x) by the factor ),1, where Y'" 1 x I: 

Yrm(x)=rlYlm (x). 

We have 

and 

Ylm ( - x) = (- 1)1 Ylm(x), 

Yi~, (x) = (- l)m l'l_m(x), 

(3) 

(4) 

(5) 

(6) 

where rill. = sine d8dch is the differential surface element 
on the unit sphere. 

2. SPHERICAL TAYLOR SERIES 

If iL'(x) is a real analytic function, that is, if it can be 
expanded in a Taylor series in a ball around the origin, 
then we may write the uniformly convergent Cartesian 
Taylor expansion in the symbolic form 

(7) 

The meaning of this symbolism is clear" The nth term 
in the series is 

a) Permanent address: Department of Mathematics, University 
of Durham, Durham, England. 

in which a summation convention is used. 

The terms in the uniformly convergent "exponential" 
series (7) may be regrouped. Provided it is remem­
bered that V' and V'2 finally "act" on a function J.', as in 
(8), we can treat V' as a commuting algebraic quantity. 
Understanding V' in this sense, we may rearrange the 
terms of the exponential series to form a series of 
solid spherical harmonics whose coefficients are power 
series in V2V'2, in which (y2V'2)K is interpreted as 
r 2Y (,,2)K. The expression we get is 

~ +1 

eX
'
v = L L 4rr l' lm (X)SI (y2,,2) Y/~,(V'), (9) 

1=0 m.-I 

where the function S; is given by 
~ K 

SI(x)=E 2KI(t(2Z:2K+l)!! 
(10) 

with the double factorial notation 

(21/ + I)! ! = (211 + 1)(2n - 1)(211 - 3)' •• 5· 3· 1. 

The formal algebraic expression (9) is developed in 
Appendix B, where some useful properties of the func­
tions 51 will also be found" 

When the Cartesian Taylor series is regrouped 
according to the symbolic expansion (9), we may call it 
a spherical Taylor series: 

J(x) = exp(x'V')J'(O) =L 4rrY1m (x)51 (~,,2) YI;"(V')<t(O). 
1m (11) 

I have not seen this formula in the literature, but it is 
the sort of relation that would appeal to late nine­
teenth century taste, in particular to Hobson'so It is 
equivalent to a formula of Hobson [below, Eqs. (12) and 
(14)1. 

The usual expansion of a continuous function iL'(x) in 
spherical harmonics is 

J(x) =L 1'lm(r) Y1m(X), (12) 
1m 

where 

(13) 

If u:(x) is analytic, we may compare (11) and (12). In 
this case J />,,(y) is the even power series in y given by 
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</J,rn(r) = 47T5 /(r
2'il 2) Y,';,,(V)</J(O). (14) 

This formula is given by Hobson (Ref. 3, p. 161). 

The special case of (13) and (14) for 1 = 0 is known 
as the mean value formula of Pizetti4: 

(15) 

If 'il2</J = 0 in a region around the origin, the right-hand 
side reduces to 47T~)(O). 

3. SINGULAR SPHERICAL HARMONICS 

If the point x is closer to the origin than a point y, 
the generating function for the Legendre polynomials 
gives 

1 00 I 

-1--1 =L ~ p,(x'y), r< Iyl "'y. 
x -y 1=0 Y 

Using the addition theorem for spherical harmonics, 
we get 

1 L 47T Y () Y,';,,(y) 
Ix-yl ='rn 2l+1 lmX~' 

(16) 

(17) 

Equation (17) is the spherical Taylor series for 
Ix_yl-l in the ball r<y. Identifying terms in (11) and 
(17) gives 

41T Ytm(Y)-4 (-2 2) *() I! ( ) 
2l+1 ~- 1T5, } 'il Y,m'il Ix-yl x=o· 18 

Since 'il 2 Ix- Y 1_1 = 0 for r < j', only the first term, 5 , (0) 

= [(21 + 1) ! ! J-1, in the series for 5 I (r2'il 2) gives a non­
zero contribution. Taking the complex conjugate and 
replacing y with x, we get 

(19) 

In this equation (21- 1) 1 ! = (2l + 1)! ! 1(21 + 1), so, for Z 
=0, (-1)11=1. 

We call Y ,m(X)/yZl+l a Singular spherical harmonic; it 
is defined by (19) for r*- 0, and in this region it satis­
fies Laplace's equation. The formula (19) is given by 
Hobson (Ref. 3, p. 127); the method used here to get 
it may be generalized. 5 Because 'il2(l/r) = 0 for r*- 0, 
there are many alternative ways of writing the singular 
spherical harmonics as derivatives of 1/ r for r *- O. A 
well-known expression is 

Y (x) (a ) l-m ( ail) m 1 
-=-P=C 1rn ilX3 aXI +i

ax2 
;: (m~0),(19') 

in which the e,m are constants. Formula (19') is given 
in Hobson (Ref. 3, p. 134) and quoted by Erdelyi (Ref. 
1, p. 251). 

If we are interested in the extension of (19) and (19') 
to distribution theory formulas, in which the derivatives 
are interpreted in the sense of distribution theory, we 
must note that they differ, in general, by derivatives 
of the delta function. The simplest example is for 1 =: 2, 
m === O. Using 
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we have 

Y20 (-'il)= (:1Tf
/2 

~C;:2 _~'il2). 
The generalized form of (19) gives 

Y20 (x) =1. (~)1/2 ~ (a2 1. + 47T 6(X») 
1'5 3 417 2 ?X32 r 3 

whereas (19') gives only the first term. We shall find 
that it is the distribution theory form of (19) which 
agrees with an attractive alternative distribution theory 
definition of the Singular spherical harmonics. 

We define the Singular spherical harmonics as 
generalized functions or distributions, by a relation of 
the form (19) but in which the derivatives are under­
stood in the sense of distribution theory: 

Y (x) 1 1 
~"' (2Z -1)11 Y ,m(- V);:o (20) 

In (20), 11r is the regular functional corresponding to 
the function 11r. 

U sing the notation of Gel'fand and Shilov, 6 the value 
of the functional (20) on a test function </J(x) is 

(Jz/+1 ,~) =(2Z:1)!! (y,m(-V)-;,Ib) 

_ (d 1 Y,m(V)</J(x) 
_px (2l-1)!! r . (21) 

In order to make possible some manipulations below, 
we must suppose that the test functions ~' are real and 
analytic everywhere, that is, that (7) and (11) are 
valid for all x. We also presume that ifJ, and its deriva­
tives of all orders, vanish faster than r-N for any 
integer 1V as l' - 00. The simplest example of such a 
function is exp( - yZ). Our test functions if! belong to the 
space Z (restricted to real argument) used by Gel'fand 
and Shilov in their discussion of Fourier transforms. 

Under the assumptions of the previous paragraph we 
can write a spherical Taylor series (11) for the function 
Y,m(V)if!(x): 

Y,m(V)ifJ(x) 

= 41T L Y,' m' (x)5,' (r2'il 2
) Y/rn , ('il) Y,,,, ('il) ifJ (0). (22) 

I'm' 

Inserting (22) in (21) and integrating over angles, we 
find 

( )mlf) ,\ f 2 47T 12 2 ( ( 
I ,I/J) =: r dr (2Z _ 1) I! ;:50(r'il )Y,m V)ifJ 0~23) 

The integrand is a convergent power series for all r, 
but, of course, we cannot integrate term by term over 
the infinite range. However, using (B11) and then (14), 
we can re-express the right-hand side of (23) as 
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f 41T [1 d ] 1 l 21+1, ( 2 2)1 T ( )"'( ) dr (21 _ 1)!! -;: dr r SI r -y } 1m V' J 0 

= dr -'---, - - (r21+1~, * (v)]. !ooo 1 [1 dJ I , 

o (21-1)!, rdr 1m 
(24) 

We may integrate by parts 1 times. The boundary terms 
vanish at r = 0 because JIm and its derivatives are finite 
there, and at r = ex> because ,I belongs to the space Z. 
We ge t finally 

(25) 

Using (25), we may show that the distribution theory 
definition (20) for the singular spherical harmonics 
coincides with the alternative integral definition 

(}:~r,J'(X)) =jdXIJ(r-El)rr:'!J(X). 

In (26), e is the unit step function 

IJ(O = 1, 0, 

iJW=O, ~,O, 

(26) 

and it serves to exclude the region 0", Y :, E from the 
range of integration. The limit E - 0 is understood. In 
view of (13), the right-hand side of (26) may be re-

Therefore, the derivative definition (20) is the same as 
the integral definition (26). We may express this 
equality in the form 

(27) 

The notation in the right-hand term is meant to recall 
the integral distribution definition (26); it is not a 
product. 

4. SPHERICAL DELTA FUNCTIONS 

U sing the important distribution theory formula 

y21=_41To(x), (28) 
r 

we find that the singular spherical harmonics (20) 
satisfy the Poisson equations 

2 Ylm(x) 41T () ( ) ( ) 
y ~ =- (21-1)!! Ylm - V ox =- 41TO lm x, 

where the spherical delta functions are defined by 

(29) 

The definition (30) is not, of course, restricted to the 
space of analytic test functions, but if JI does belong to 
Z then the value of the distribution 0lm (x) on i/J is, using 
(14), 

= 21 + 1 II * (0) 
41T 41m • 

(31) 
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Similarly, the value of V'2K 0lm (x) on J(x) is 

1 
(V'2K 0lm, J) = (21- I)! I -y2K Ylm(V)<t(O) 

(32) 

If the Fourier transform of a function F(x) is defined by 

F(k) = JdxF(x) exp( - ik'x), 

then using the elementary transforms 0=1, (l/rt 
= 41T/k2

, we find 

(0)- (- 0 1 
T (k) 

1m = (21 _ I)! ! lZm 

and 

5. MUL TIPOLE FIELDS AND SOURCES 

(33) 

(34) 

(35) 

In this section the language and symbols of electro­
statics (steady magnetic fields) are used to express the 
relations between curl-free fields (divergence-free 
fields) and their point sources. The notation and units 
are those of Jackson. 7 

A static electric field satisfies 

V'E=47TP, VXE=O 

so that 

E=-VcfJ, -y2 dJ =_41Tp. 

If 

cP(x) = Y lm (X)jy2Z+t, 

the corresponding source (charge density) is 

p(x) = 0zm(x), 

and the corresponding electric field is 

E(x) = - V Yzm(x)/ y2Z+1. 

A steady magnetic field satisfies 

VXB= (41T/C)j(X), V'B=V'j = 0, 

so that 

B=V'XA, V'A=O, V'2A=_ (41T/C)j. 

In view of the identity 

vx (xXV) =X-y2 - V (1 + Y ~) 
h 

we have, for r> 0, l:· 0, 

lvx( XV)Ylr(~) --vYlr(~) - 1 x r 1+ - r 1+ • 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

Consequently, the magnetic field defined by the distribu­
tion theory formula 

B(X)=-jvX(XXV') )~~~) , (45) 

is the same as the electrostatic multipole field (40) for 
y> 0, 1 :-. O. The source (current density) of this mag-
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netic field is 

j(x)= 4~ VXB 

= -~vx [vx (xXV)] Ylm(x) 
41T1 yn+r 

eYe 
= 41T1 v 2(x Xv)yzf.T =- f (x XV)6 Im (x). (46) 

Because (1 +x,v)Ylmlr21.1 =-lYlm/~I+1 even in dis­
tribution theory, the difference between (45) and (40) is 
a "point" distribution 

which satisfies 

VX (4z" X6 1m) 
41T 

=-T xXV6 Im 

v o 
ez" X6 1m) = - 41T6 Im • 

To prove the second relation, we use the definition (30) 
of the spherical delta functions: 

41T 
= -[(151m, XOVIj!) 

41T 
--1(21-1)1! (6(x), Ylm(V)XoVIj!) 

= - 41T(6 Im, Ij!). 

The formulas (39), (40) and (45), (46) for general 1 do 
not reveal the simplicity of the dipole case. The mag­
netic equations in particular are unnecessarily compli­
cated. The dipole equations can be expressed more 
simply as follows. 

An electric dipole p has a charge density p = - p' V6(x) 
and a corresponding electric field 

1 
E = V (poV)-. (47) 

r 
One can show, as in Ref. 8, that 

(V(p.V)~, Ij!) = fdX~V(pOV)1j! 
= jdXe(r- E)Ij!V(poV)~_ 4; plj!(O). 

Therefore, 

E = e (r - E)V (p.V).! _ 41T p6(x). 
r 3 

(48) 

This is the form in which the dipole field is written by 
Jackson. 7 

A magnetic dipole m produces a field B with the same 
form as (47) outside the source 

1 1 
B=VX (VXm)-=V(moV)-+41Tm6(x) 

r r ' 
(49) 
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1 81T 
B = e(r - E)V(m.V):; +3m6(x). 

The corresponding current is 

j =...£. V X B = eV X m6(x), 
41T 

(50) 

(51) 

which is the standard form (Refs. 8,9) for an infinites­
imal current loop with magnetic moment m. 

To apply equations (45) and (46) to the magnetic 
dipole case, we must take 1 = 1 and replace - Ylm!~I.l 
-moV(1!r). Since 

1 
(mov)[v x (xXv)]- = 0 

r 1 1 
=Vx (mXV)- +Vx (xXv)moV-, 

r r 
we regain (49) for B; and since 

(mov)(xXV)6(x) = 0 = mX V6(x) + XX V(moV)6, 

we regain (51) for j. 

The point sources P = 15 1m and j = - (ell) (xXV)6 Im 
generate fields (40) and (45) that extend beyond their 
sources. The fields are not pOint fields; they are non­
zero however large r is. But the electrostatic field 
corresponding to the point source 

P = V 2K 6Im (x) (K>-- 1) 

is zero outside an infinitesimal neighborhood of the 
point x=O: 

¢ =_ 41TV2K.26Im(x) 

E = 41TVV2K.26Im(x). 

Similarly, the point current 

j =+ (xXV)V2K6rm(x) (K>-- 1) 

produces a point magnetic field 

(52) 

(53) 

(54) 

B=- 41T vx (xXV)V2K.26Im(x). (55) 
e 

For 1 = 0, both (54) and (55) vanish because x XV6 = O. 

In addition, the independent point currents 

j(x) = V X (XX V)V2K 6Im (x) (K>-- 0) 

generate the point fields 

(56) 

(57) 

The pOint fields will appear in Secs. 6 and 7 after we 
have introduced a formal expansion for finite extended 
sources in a series of spherical delta functions and 
their derivatives. The cumulative effect of an infinite 
number of point fields will be a field which is nonzero 
in an extended region when we interpret the series as 
a distribution on the space of analytic test functions. 

6. ELECTROSTATIC MULTIPOLE EXPANSION 

Suppose the electrostatic source p(x) is a piecewise 
differentiable density function that vanishes outside 
some bounded region. We write (see Ref. 6, p. 160) 

p(x) = Idx'p(x')6(x- x') 

= I dx' p(x') exp( - x' 'V)6(x) 

'" PI '''i = L (- l)n~V. "·v 6 (x) 
n ' '1 in , n=O • 

(58) 
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where 

Pil· •. i '" f dx'p(x')x; ... x;' . 
n . 1 n 

Equation (58) appears to be only a formal expansion. 
However, regarding pix) as a distribution on the space 
Z of analytic test functions, we have 

(p, n = I dx' p(x')4(x'). 

The integral is over the bounded region in which p is 
nonzero. We may expand J. in its uniformly convergent 
Taylor series and integrate term by term, getting 

(p, ql) = jdX' pix') exp(x' .V')q.'(O) 

This is the implication of Eq. (58). 

Using the expansion (9) to regroup the terms in (58), 
we get the corresponding decomposition of pinto 
spherical delta functions and their derivatives: 

pix) = 41TL IdX' p(x') Y/;" (x' )SI (1"2V'2) Y 1m (- V') o(x). (59) 
1m 

Defining Plm by (13) and using the definition (30), we 
have 

pix) = 41T2 (2l - I)! ! I 1',21+2d1" Plm (1" )SI (1',2V'2)Olm (x). 
1m (60) 

This expansion of p is to be interpreted in the same way 
that the Cartesian expansion (58) was interpreted. We 
can make explicit the decomposition of p into terms (39) 
leading to external fields, and terms (52) leading to 
"point" fields: 

pix) =L ~ f 1',21+2p (1")d1" ° (x) 
1m 2l + 1 ' 1m 1m 

, ~ f 1', 2 I +2 K +2 
+ 41T~ (2l- I)!! K~ 2Kg! (2l + 2[( + I)! ! 

Although highly formal, the decompOSition of p is not 
entirely without physical application. Consider a sim­
ple case, a uniformly charged shell of radius a and 
total charge Q. Its density is 

The electrostatic energy of such a shell in an external 
field <PEXT(X) is therefore 

I - Qa
2 

2 dx P(X)<PEXT(X) - Q<PEXT(O) +-6 V' <PEXT (0) + .... 
The complete expansion is an example of the Pizetti 
formula (15). The "correction" to the point contribution 
has the form of the Darwin term in quantum electro­
dynamics (see, for example, Ref. 10). 
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Returning to the general case, we find, by com­
paring (29) and (37), the electrostatic potential <P to 
which p gives rise: 

<6 (x) = 41TL (2l- I)! ! Il1',21+2 d1' , 
1m 

X Plm(1")SI (1"2V'2 )Ylm(x)! 1'2/+11. 

The corresponding electric field is 

E(x) = - 41TL (2l- I)! ! I[1',21+2d1" 
1m 

X Plm (1")SI (1"2V'2)V' Y1m (x)fy21+11. 

Outside the source we may treat cp as an ordinary 
function rather than a distribution. In this region 
V'2[y 1m fy21+11=0, and Eq. (61) reduces to the usual 
multi pole expansion 

() '\ 41T [j"d' (') ,2/+21 Y I2m (f) <6 X =L --- l' Plm l' l' 1+' 
1m 21 + 1 l' 

(61) 

(62) 

(63) 

In addition to the "external" terms (63), Eq. (61) con­
tains, for each l, an infinite series of pOint fields (53) 
whose cumulative effect is an extended field. We make 
this explicit by using the series (10) for SI together 
with the Poisson equations (29): 

() " 41T f ,21+2 , (,) Y)m(f) 
<P X =L "il + 1 l' d1' P'm r 1+ 

1m f 

(64) 

This equation is to be understood as the formal expres­
sion of a distribution whose value on a decreasing 
analytic test function 1/J is 

(<6 1/J)=L ~ fr ,21+2 p (r')dr,j1'w* (r)dr 
, 1m 2l + 1 ) 1 /m ' 1m 

(65) 

We have used (25) and (32) to obtain (65). 

To confirm (65), we may compare it with the value 
of (<p, <p), where <P is the integral solution of Poisson's 
equation: 

<p(x) = I dx'. p(x')/ Ix- x' I. (66) 

Inserting 1 = e(r- 1") + 9(1" - r) to split up the range of 
integration and using (17) in the two appropriate forms, 
we have 

[
9(1'- 1")1',21 8(r' - 1')] , 

x ;1+1 + r' Plm(r ). 

E.G. Peter Rowe 1966 



                                                                                                                                    

Applying rp to a decreasing analytic test function </J, we 
get 

[
y,2 1 ~I ] 

X - 8(y- y,) +- 8(y' - y) • 
y y' 

The function 8(y- y,) may now be replaced by 1- 8(r' 
- y) to obtain 

(rp, </J) =L 21~ 1 fYdY~I':n(Y) (y,21+2dy I Plm(y/ ) 
1m }' 

"f *( ) 8(y'-Y) 'd I +41TL ydY</Jlm Y 2l+1 Y Y 
1m 

XPlm(r')[r21 +1 _ r,2l+1] 

By introducing the explicit form (14) for <!Jl':n in the 
second term and doing the r integral over its finite 
range, we get agreement with (65). 

7. MAGNETIC MUL TIPOLE EXPANSION 

We suppose that a current j(x) is differentiable and of 
limited spatial extent. Because it is conserved it may 
be decomposed into a toroidal part and a poloidal part, 
determined by scalar fields C(x) and D(x) respectively: 

j(x) =xXVC(x) + V x (xXV)D(x). (67) 

An illuminating proof of this formula is given by Moses 
in Ref. 11, where further references may be found. 

The scalar functions C and D may be expanded in 
spherical delta functions in exactly the same way that 
the electrostatic source P was expanded in (60): 

C(x) =41TL(2l-1)!! J r,21+2dr' C 1m (r')SI(r,2V 2)olm(X) 
1m (68) 

D(X) = 41TL (2l-1)! ! J r,21+2dr' D lm(r')SI(r,2V 2)olm(X) 
1m (69) 

Because '12 commutes with xXV, we may now write the 
current 

j(x) =41TL(21-1)!! J r ,2
l+

2dr' 
1m 

xC Im(r')SI (y,2V 2)[X X volm(x) 1 
+ 41TL(2l- I)! ! J r'21+2dy' 

1m 

(70) 

The l=O terms in the two series are zero (xXVo=O). 

The magnetic field to which j gives rise is identified 
term by term according to the relation in Sec. 5. Out­
side the source only the K = 0 terms in relations the 
toroidal part of the current contribute: 

B= 41TL _Z_}dy'y/21+2C (y,)V Ylm(x) 
elm 2Z+1 Im~' 

Mosesii shows that the toroidal part of j may be 
written 
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(71) 

where 

and the l = 0 term is absent. In our notation, 

C () = -21 (dO [(XX V) YI':n(x) Jej (x) 

this gives 

1m r r J / l (l + 1) 

y-21 ( 
= Z(l + 1) JdOYI':n(x)V.(XXj(x». (72) 

Substituting (72) into (71), we get a representation of 
the external magnetic field in terms of a scalar 
potential. 12 

APPENDIX A 

Expanding the trinomial in Eq. (2), we get an explicit 
form for W Im(x): 

Wlm(x) = L -'---b
l

: I (xl - iX2)a(2x3)~( - l)C(xj + iX2)C, 
c-a=m a. . C • (A 1) 

in which the sum is over the nonnegative integers a, b, 
c such that a + b + c = land c - a = m. 

If the operator L = - ixXV is expressed in terms of 
the variables I; =xI + iX2' T/ =Xl - iX2' Z ==X3, then its 
components are 

o 0 
L.=L3=1;~-T/GT/' 

L+=Lj +iL2=-I;~+2z~, 
GZ aT/ 

L == LI - iL2 == + 71 ~ - 2z ~ - '/oz ilr 

One can then show that the Wlm of (AI) satisfy 

L+ W1m = (l + m + 1)W1m+1 (m < 1), 

L_ W1m = (l- m + l)Wtm _1 (m> -l), 

L+WII= O=L_Wt _l • 

(A2) 

(A3) 

Using (A3) and the definition (1) for 
of W,m(x), we get 

Y1m(X) in terms 

L"Ytm=mY,m, 

L.Y'm = [(z 'f m)(l ± m + 1) F12 Y ,m±!> 
(A4) 

which show that the harmonics with fixed l are related 
in phase by the Condon and Short ley convention. 2,7 For 
the specific case m == -l, (1) and (AI) give 

1 (2l+1) 1/2 
YI -/(X)=2Tz! 4iT [(2l)!]1/2(sin8 )lr

'
exp(-ilrp), 

which is in agreement with equation (2.5.5) of Ref. 2. 

APPENDIX B 

From the calculus of special functions we get the 
physically important Rayleigh formula (Ref. 2, p. 81) 

~ 

exp(ixoy) =L. i 1(2l + l)j, (xy )P , (x·y) 
1=0 

E.G. Peter Rowe 1967 



                                                                                                                                    

"4 ·zj/(xy) y ()y* ( ) 
=L 7ft ( )1 1m X 1m Y , 

1m xy (B1) 

Weare interested in finding a formal series expan­
sion for exp(x.y). Replacing x by - ix in (B1) (which 
entails x - ± ix) and using the fact that j I(xy )/(xy)l is an 
even power series in xy, we get 

exp(x·y) =L 47f[jl(ixy)/(ixy)/1Ylm(x)Y/~1l(Y)' (B3) 
1m 

The function in square brackets is related to the modi-
fied Bessel function iv(x) = (- i)" Jv(ix). In fact, 

=il(ix) =S (x2 ) 
(iX)1 I , 

(B4) 

in which the last equality follows from definition (10) of 
the text. We now write (B3) 

exp(x.y) =2: 47fSI (X
2y2) Ylm(X)Y;~ll(Y)' (B5) 

1m 

which is the form quoted in Eq. (9) of Sec. 2. 

From its definition, 
00 K 

SI(X) =E 2KK! (2l: 2K + 1)! ! ' (10) 

the following properties of SI can be deduced directly: 
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S I-I (x) - (2l + l)SI (x) = 2xS; (x) =XSI+I (x), 

x ~SI(x2a2) = SI_I (x2a2) - (2l + 1)SI(x2a2), 

(;:x) [,21 +1 S I (x2a2) 1 = X
21

- 1 SI_I (X
2(12), 

In (B9), (B10), and (B11), (12 is a constant. 
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Lower energy bounds for translation-invariant atomlike 
systems 

Richard L. Hall 

Department of Mathematics. Concordia University. Montreal. Quebec. Canada 
(Received 16 March 1978) 

A system of N identical particles with masses ml interact with each other via a pair potential V and with 
an additional particle of mass mo by the pair potential U. and the system obeys nonrelativistic quantum 
mechanics. A general lower bound formula is derived for the ground-state energy, which reduces to 
Coleman's result in the special case mo = 00. The lower bound is compared with the exact energy for the 
harmonic oscillator problem Vex) = k ix 2 and U(x) = k~x 2, which has recently been solved exactly 
(Hall). 

1. INTRODUCTION 

We consider a system of (N + 1) particles labeled 
(0,1,2, ... ,N) conSisting of a particle with mass mo and 
N identical particles with masses mi' The identical 
particles interact with each other via a pair potential V 
and they interact with the remaining particle (labeled 0) 
by the pair potential U. Assuming that the system obeys 
nonrelativistic quantum mechanics we may write the 
translation-invariant Hamiltonian H as follows, 

(1. 1) 

N N } 

+?; UOi +~i<j V ij , 

where the total mass l11=mO+Nml' 

If U and V are both Hooke's law pair potentials, we 
have shown (Hall1,2) that the Hamiltonian H separates in 
suitable relative coordinates and consequently the 
"harmonic atom" is an exactly soluble problem. In the 
present paper we determine a lower bound Ef to the 
ground-state energy El of H for general U and V. The 
bound Ef .:s EI is expressed in terms of the exact 
eigenvalues of a suitable "reduced" three-particle 
Hamiltonian h which is related to H by the equation 

<If) = <If). (1. 2) 

The Hamiltonian H is chosen so that Eq. (1. 2) is valid 
for any normalized translation-invariant (N+ I)-particle 
wavefunction that is either symmetric or antisymmetric 
in the N identical-particle indices (1,2, ... ,N). 

There have been two independent lines of investigation 
leading to energy lower bounds via equations like (1. 2). 
The first was the "equivalent two- body method" initiated 
by Wigner3 in 1933 for the triton problem (mo=oO, U=O). 
A rigorous argument of Post4 can be used to show that 
in many instances Wigner's method leads to lower 
energy bounds (for a very brief history see Hall et al. 5). 
The second approach was introduced by Bopp,6 using 
density matrices, for atomic systems (with mo = 00, 
u* 0). Rigorous results were obtained in this case by 
Coleman et al. 7 Whereas in nuclear physics translation 
invariance is essential, in atomic physiCS it is an 
acceptable first approximation to assume an infinitely 

massive nucleus (1110 = 00). This difference has made the 
first line of investigation, the translation-invariant 
case, more complicated because the symmetry re­
quirements of the Pauli principle must be expressed in 
terms of functions of the relative coordinates. It turns 
out that the lower bound in this case is sensitive to the 
choice of relative coordinates and we have had to 
optimize with respect to the class of coordinates which 
allow its derivation (HaIl8). 

In this article we treat the type of system considered 
by Bopp and Coleman but we assume 1110 is finite and 
we keep translation invariance throughout. Our main 
result (the theorem in Sec. 2) is a generalization of 
Coleman's results (Ref. 7) and reduces to the latter 
when m 0 - 00. We could also treat, by the same argu­
ments, systems consisting of, say,S groups of identi­
cal particles interacting by pair potentials, as we have 
done (HallS) exactly for the harmonic oscillator. How­
ever, we present here the simplest case in which two 
types of particle are present. Also, although we con­
sider only scalar particles, the introduction of spin and 
isotopic spin is straightforward (d. Hall et oZ. 5,8,10). 

Calogero et aZ. 11 have considered the case U i- 0, 
m 0 = 00, and they have constructed a large variety of 
reduced Hamiltonians f! for this problem. For example, 
their Theorem 1 Corollary 1. 1 yields a reduced 
Hamiltonian which is equivalent to Coleman's (Ref. 7), 
and, of course, to ours for lJIo = 00. However, the pro­
blem of incorporating the maximum amount of permuta­
tion-symmetry restriction into the lower bound needs to 
be solved for each choice of ft. Furthermore, in our 
problem in which, 1170 is finite, the reduced Hamilton­
ian f! only has the form of a three-body Hamiltonian in 
relative coordinates: In individual- particle coordinates 
f! is an (N + 1)- particle operator; this will be the case 
whenever the appropriate relative coordinates are not 
orthogonal (cf. HaIl8). Other contributions and develop­
ments in this field have been made by Carr et oZ. , 12 

Savchenko, 13 Balbutsev et al., 14 and Weidemannl5 who 
applied density matrix methods to the few-nucleon 
problem. 

2. THE MAIN RESULT 

We define new coordinates p = Br and momenta 
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'TT = (BT)_l p, 'TTj=-iYf'lpj, by 

mo ml ml 1111 

m m 111 m 

B= - 1 1 0 0 (2. 1) 

-1 0 1 0 0 

- 1 0 0 1 0 0 

etc. 

Thus Po is the center-of-mass coordinate and Pj 
= (r j - r o), i = t' 2, ... , N. It is necessary for our argu­
ment (cf. Hall) that (23) P2 =P3, where (23) permutes 
the individual-particle indices 2 and 3; Jacobi orthogo­
nal relative coordinates are therefore not admissible. 
Apart from this constraint the choice has been made so 
that our theorem will reduce to Coleman's result7 for 
1110 -00, ro -0. 

If we denote by K the total kinetic energy operator 
and by M the diagonal matrix of the masses, then we 
have 2K = pTM-lp = rrTBM-1BTrr. It follows from (2.1) 
that 

(K) = E ( [rr% + N (~ +~) rr~ + N(N _ 1) rr1.rr2]) , 
111 1110 1111 1110 

(2.2) 

where expectations are taken with respect to normal­
ized translation-invariant (N + I)-particle functions 
which are symmetric or antisymmetric in the individ­
ual-particle indices (1,2, .•• , N). Hence 

(2.3) 

where 

+ U01 + U02 + (N - 1) V12] • (2.4) 

The Hamiltonian Ii is N 12 times the translation-in­
variant Hamiltonian for a three-body problem [i. e. , 
(2.4) with N = 2] consisting of two identical particles 
with masses 111; and a third particle with mass mo, 
where 

I (1 N - 2) -1 
111 1 = ;;; -----;;;;-

and (2.5) 

I 1110 
nlo = (N -1)' 

This interpretation fails if 1110 is too small, for it is 
necessary to require 

(2.6) 

We suppose that Ii has n bound states [<Pi (Pi> P2)] with 
a corresponding nondecreasing sequence of eigenvalues 
C 1 ~ C Z ~ ... ~ C n' If the N identical particles are fer­
mions, then we only consider the eigenstates of Ii which 
are antisymmetric in (Ph P2); similarly for bosons we 
restrict to symmetric states. With this notation and 
assumptions we prove the following 

Theorem: 

Bosons or fermions: El ;" Cl = Ef. (2.7) 
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(2.8a) 

Fermions 

Nodd: E 1;,,1. t Ci =Ef (2.8b) 
N 1=1 

where, if the number of bound (fermion) states of Ii is 
n-, the sums in (2.8) run up to i=min(n- ,N -1) or 
i = min(n - ,N), respectively. 

Proof of the Theorem: Suppose the normalized ground 
state of H is the function ljJ(Pl, P2, ••• PN) which is sym­
metric or antisymmetric in the variables (PbP2>'" ,PN) 
because it has this symmetry in (rt, r z, ... r N ). Then 
we can analyze IjJ in terms of the normalized eigen­
functions [<Pi (Pi> P2)] of Ii and we have 

IjJ(Ph Ph ••• ,PN) =~ C i <Pi (Pi> PZ)ljJi (P3, P4, ••• ,P N), (2.9) 
i 

where II<pi II = IIljJi II = 1, and 111jJ112 = Li ICi 12 = 1; and the 
summation is understood to include (if necessary) in­
tegration over the unbound states of Ii. We now apply 
(2.9) to Eq. (2.3) to give 

El =~ ICi 1

2Ci' (2.10) 
i 

If we put the entire "weight" in the first coefficient 
(corresponding to the lowest eigenstate of h with the 
appropriate symmetry), then (2.10) immediately yields 
(2.7). 

In the case of fermions specifically, we apply an 
argument exactly analogous to that of HallS and, for the 
bound-state coefficients, we obtain 

ICi 1

2
" (N - 1)-1. (2.11) 

The inequality (2.11) yields the first bound (a) of (2.8). 
The more stringent bound (b) for N odd is obtained by 
Coleman's argumene which is applicable since the 
many-body state IjJ is normalized. This establishes the 
theorem. 

For N = 2 (the three-body problem) of course El = C l' 
For 1110 - 00 and ro - 0, we have Pi = rj and the reduced 
Hamiltonian Ii =NK/2, where K is the two-body opera­
tor in Coleman's theory. 7 Thus (2.8) is exactly Cole­
man's result if mo=oo. 

The bound (2. 8a) appears formally the same as the 
bound we obtainedS for a system of N identical fermions 
(U = 0, 1110 = 00). However there is an important differ­
ence which makes it difficult to derive our earlier re­
sult from (2. 8a): In the earlier bound all the eigen­
states of the reduced Hamiltonian must be counted, not 
just the fermion states. Suppose for example that in the 
earlier bound (the reader will need to consult HallS in 
order to follow this argument) we use a suboptimal set 
of relative coordinates Pi = (r1 - ri)1 v't, i;" 2, for 
which X=2(N-l)/N, then we get for the harmonic 
oscillator in one dimension Ef!E I =N1/2(N_l)1I 2 /(N 
+ l)v~; however, the conjecture that only the fermion 
two-body states need to be included yields Ef /EI 
= v't(N - ~)NI/2/(.N+ 1)(N _1)112 which is clearly false. 
The reason for this lies in the expansion (2.9) above: 
The factors rjJj and IjJI are necessarily antisymmetric in 
(1,2) and (3,4, ... ,N) respectively; in the correspond-
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ing expansion of HallB the functions cf>i [Eq. (3) in that 
reference] need not be antisymmetric in (1,2) because 
this permutation alters the other relative coordinates. 
By choosing new coordinates in (2.9) and taking the 
special case mo - co, [; - 0, it is possible to derive 
(2.11) and therefore (2. Sa) appropriately, but it is much 
more convenient to treat the cases U = 0 and U *- 0 
separately. 

3. THE HARMONIC OSCILLATOR 

Since we have solved (Hall1,2,9) the translation-in­
variant harmonic atom (and harmonic matter) problem 
exactly for all N, we can use this system to compare 
Ef with E 1• It has become a tradition in the translation­
invariant work to test results on exactly soluble 
oscillator problems. In fact we have proved (HaIl16 ,ll) 
that for N bosons with U = 0, the bound5 corresponding 
to (2.7) yields the exact energy El if and only if the 
pair-potential V has the form V(r) = kr~ (orthogonal 
relative coordinates, A = 1, are required for this re­
sult; see also Hall et al. 5,8). For U*- ° we note that 
whenever we choose mo = co, the harmonic-oscillator 
example provides a test for Coleman's bound,l a test 
which has not been discussed before. 

We consider scalar particles in one dimension and we 
suppose that U and V are given by 

(3.1) 

The ground-state energy of His given1,2,9 in this case 
by 

El = nko J:... +~ + (N0 _ l)n Nkl + ko , 
( )

1/2 ( 2 2)112 

-J2 ml mo 2ml (3.2) 

where q = 1 for bosons and q = 2 for fermions. Likewise 
the exact eigenvalues of Ii (a translation-invariant three­
body Hamiltonian) are given by 

[(n,m)=2
N! [ko(~+~.) 1/2(1+2n) 
Y2 ml mo 

+ [2(N _ l)k~ + k~J lIZ (.l.. _ N - 2) 1/2 
ml mo 

x (1 +2m)], (3.3) 

where nand m are any positive or zero integers; for 
fermion states, m must be odd. With the exact results 
(3.2) and (3.3) the theorem proved in Sec. 2 can be 
tested in detail. We shall limit the discussion to a few 
illustrations. 

A. The bound E I ~ [I = E ~ applied to bosons 

For the bound (2.7) we have [1 = [(0,0) = Ef. Suppose 
kl = ° and mo = (N - 2)mj, the infimum of allowed values, 
then Ef lEI decreases from /T 1(1 +/T)'" 0. 59, at 
N=3, to~atN=oo;formo=oo, EfIE1=lforallN. The 
poorer results for mo finite may be related to our use 
of suboptimal8 relative coordinates for the lower bound 
method; this difficulty, which persists in the fermion 
case, has not bet. -, overcome as yet. For mo = 00 and ko 
=0, we get EflEl~ [N/2(N_l))1/2 in contrast to our 
earlier Method 15 (for N identical particles) which yields 
EflEI = 1. 
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B. The bound E1 ~ (N~ 1)-1 ~-1 [i = E~ for fermions 
i= 1 

Since the ordering of the eigenvalues [(n, m) of H 
depends on the masses, the coupling constants, and on 
N, we cannot give an explicit general recipe for Ef; 
we do have to remember that m is odd. If mo is suf­
ficiently close to the extreme value (N - 2)mt. then the 
first (N - 1) energies are given by [i =[(0, i) for 
i = 1, 3,5, ..• , (2N - 3); in this extreme case the ratio 
Ef lEI is given (for N> 2) by 

~f = ~Nko{ko + (N + l)[(N - 2)(N - 1)/2J1
/
2 

1 

(3.4) 

Suppose, continuing this illustration, we set kl = 0 and 
N=3, then from (3.4) we have Ef/E1=-ru; other ex­
amples of this extreme case will give worse results 
unless kI is negative2

,9 (repulsion between like parti­
cles). However, as mo increases the quality of the 
bound improves. 

We now suppose mo = 00 and also kl = ° (no interaction 
between the "harmonic electrons") and we find 

EL N_l 

E: = [N(N - 1)]-1 ~1 [1 + (n + 111 )iJ, (3.5) 

where the sum is over the first (N - 1) terms, with 11/ 

odd. By choosing special values of N so that the sum in 
(3.5) can be calculated exactly we find 

N=(v+l)2+1, v=0,1,2, ... , 
(3.6) 

Ef SJ+19v+12 
El 6(v+1)(v+l)2+1]' 

A few numerical values are shown in Table 1. 

By contrast, our earlier boundS for the case U = ° 
(I?o=O) yields EfIEl=Nl/2(N-l)1/2/cv+l)y/2"with pair­
distance coordinates [X =2(N - 1)/Nl, and Ef lEI 
= 1'J(N - 1)/2 (N + 1) with optimized coordinates (A =t)o 
This comparison suggests that it should be possible to 
improve the more general bound (2. S). 

4, CONCLUSION 

We have established a general lower bound on the 
ground- state energy of translation- invariant atomlike 
many-particle systems. In the special case 1110 = 00 the 
bound yields Coleman's earlier result. 7 Various 
generalizations of the theorem in Sec. 2 are possible. 
For example, we can prove a similar result for a 
system composed by 5 groups of identical particles; we 
already have a test case for this type of theorem be­
cause we have solved9 such problems exactly for 
Hooke's law potentials. Furthermore, by constructing 
a model for the lower bound, we can use the argument 

TABLE 1. The harmonic atom with noninteracting "electrons" 
(k 1 = 0): The ratio Ef IE 1 of the lower bound to the exact energy 
is asymptotically like N-l/2. 

N 2 5 10 17 26 ;)7 1/ 00 

1 0.65 0.46 0.35 0.28 0.2:3 II 0 

Richard L. Hall 1971 



                                                                                                                                    

of HalliS to invert the Rayleigh-Ritz principle and 
yield lower bounds on the entire bound-state spectrum. 

We feel that such generalizations of our theorem 
would be premature at the present time. For bosons, 
the bound (2.7) does sometimes yield exact solutions, 
as we found in Sec. 3; but the potentially more inter­
esting fermion bound (2.8) may be intrinsically poor 
for large No In the case of small atoms the bound (2.8) 
appears to be quite good' (if we can accept arguments 
involving experimental data). However, the applica­
tions to the harmonic oscillator which we discussed in 
Sec. 3 demonstrate very clearly that not enough of the 
constraint of the Pauli principle has been kept in this 
lower bound. 

The interesting question which arises here is whether 
it is possible to construct a new reduced Hamiltonian 
Ii which would allow small values of mo. We could then 
allow mo = mi and U = V and if the new bound would re­
duce mutatis mutandis to our earlier results for (N + 1) 
identical fermions, some of the improvement might be 
retained for U *" V and mo large. It would also of course 
be theoretically much more satisfactory if both types of 
system could be treated comfortably within the same 
general formulation. The present paper which discusses 

1972 J. Math. Phys., Vol. 19, No.9, September 1978 

atomlike systems in the center-of-mass frame is a 
step in this direction. 
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Symmetries of the 6j coefficient 
K. Venkatesh 

Department of Physics. University of Mysore. Manasagangotri. Mysore 570 006. India 
(Received 31 August 1977) 

The equivalence between the two sets of .F3(1)S for the 6j coefficient is explained through two sets of 
equalities. It is shown that the 144 symmetries can be partitioned into 12 sets of 12 each, depending on 
the number of terms in the series representation for the 6j coefficient. The 12-element group, recently 
discussed by Lockwood, is shown to account for only 12 symmetries of the 6j coefficient. 

The 6j coefficient can be written l in the following sym­
metrical form: 

where/1l=a+b+c+d,/12=a+d+e+J,/13=b+c+e+J, 
andal=a+b+e, a2=c+d+e, aJ=a+c+J, a 4 =b+d+/ 
Let/1o be the minimum ofthe,B's and a o be the maximum of 
the a's. The number of terms in the above series representa­
tion, Eq. (1), is determined from: n =/1o-ao-

In our earlier studies, we have shown that the 144 sym­
metries of the 6j coefficient can be accounted for, either by a 
set of three Ji' J( I)S (Set 1),2 each accounting for 48 symme­
tries, or by a set of four Ji' J( I)S (Set II), J each accounting for 
36 symmetries. From the study of the parameters and the 
convergence condition4 of the Ji' 3( 1 )S, the upper limit of the 
summation index in the Ji' l(I)S ,n was determined as the 
minimum of the negative value of the negative parameters in 
the numerator. Since the number of terms in the Eq. ( 1 ) and 
the Ji' J(I)S for the 6j coefficient are the same, we have the 
following sets of equalities: 

Set I: 

MIN(c+d-e, a+b-e, b+d-J, a+c-j) =/1l-ao, (i) 
MIN(d+/-b, a+/-c, d+e-c, a+e-b) =/12-ao, (ii) 
MIN(c+/-a, b+/-d, b+e-a, c+e-d) =/1J-aO' (iii) 

Set II: 
MIN(c+d-e, d+/-b, c+/-a)=/1o-ah (i) 
MIN(a+b-e, a+/-c, b+/-d) =/10-a2, (ii) 
MIN(b+d-j, d+e-c, b+e-a) =/1o-aJ, (iii) 
MIN(a+c-j, a+e-b, c+e-d) =/10-a4 • (iv) 

Considering the equality (i) of Set I, if the minimum on 
the left-hand side is fixed, say c+d -e, then, obviously, 
aO=al· From the way in which the two sets of Ji'll)S are 
derived/·J it is evident that all those symmetries of the 6j 
coefficient which are accounted for by the permutations of 
the parameters of the Ji'll) series (i) of Set I are simulta­
neously accounted for by the Ji'l(l) series (0 of Set II and 
both the Ji'l(1)S will have c+d-e+ 1 number of terms. In 
fact, only 12 symmetries are accounted to by the Ji'l( 1) series 
(i) of Set I when it has c+d -e+ 1 number of terms. As an 
illustration of the proof, the list of these 12 symmetries is 
given in Table I. Hence the 48 symmetries which are ac­
counted for by a single Ji'll) series of Set I can be partitioned 

into four sets of 12 each, depending on the number of terms 
in the Ji'J( 1) series. Therefore, from the above arguments, it is 
straightforward that each one of the Ji'J( 1) series in Set II will 
simultaneously account for the set of 12 symmetries which 
are accounted for by a single Ji'J( 1) series of Set I and both the 
Ji'J( I)S will have the same number of terms. 

Starting from the Set II of equalities, it is easy to see that 
the converse is also true. The 36 symmetries which are ac­
counted for by a single Ji'J(I) series of Set II can be parti­
tioned into three sets of 12 each. Each one of the three Ji'll)S 
in Set I will simultaneously account for the set of 12 symme­
tries which are accounted for by a single Ji'1(1) series of Set II 
and both the Ji'l( I)S will have the same number of terms. 

From the above argument, it is clear that the 144 sym­
metries can be partitioned into 12 sets of 12 each, depending 
on the number of terms in the series representation for the 6j 
coefficient. Since the number of terms in the series represen­
tation, Eq. (1), takes 12 different valuesl as the 6j coefficient 
goes through it's 144 symmetries, there should be 12 sets of 
canonical parameters 1 for the 6j coefficient: (n i; a Lb ~ ,c L 
dLeL i= 1,12).6 It is elementary to calculate the 12 sets of 
canonical parameters. While the series representation, Eq. 
(1), is invariant for all values of n, the expression for the 6j 
coefficient in terms of the canonical parameters, Eq. (5) of 
Ref. I, is invariant for the three values of n that are possible 
for a ao(q z of Ref_ 1 ). Since the parameters d Land e L change 
their values as n takes different values, only 12 symmetries 
are accounted for by the 12-element symmetry group of per­
mutations of 6J (n; a vb LtC L; d ve L ). Thus the set of 12 
symmetries of the 6j coefficient corresponding to an ni will 
become a group by itself in the canonical parametrization. 

By making the substitution t=/10-5 in Eq. (1), the 6j 
coefficient may be expressed as follows: 

(6J)=PRT, (2) 

TABLE I: The list of 12 symmetries (Ref. 5) accounted to by the,F,(l) 
series when it has c+d-e+ J number of terms. 

{: : ;} 
e : ;} 
{

OJ bJ eJ} 
dJ CJ j; 

{
bJ OJ eJ} 
CJ d J j; 

f
e, b, a,} 
f, c, d, 

[
b, e, a,} 
c, f, d, 

f
e, b, a,} 
j; c, d, 

{
b' e, a,} 
c, j; d, 
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where 

p=( _l)aL+bL+cL+dL+eL, (3) 

n 

T= 2: (-1)-S(4n+aL+bL+cL+dL+eL-s+1)! 
s=o 
X [s!(s+dL)!(s+eL)!(n-s)!(n+aL -s)! 
X(n+bL -s)!(n+cL -s)!] -1, (4) 

and R is given by Eq. (7) of Ref. 1. 

Equation (2) is invariant under any permutation of 
av bv and cL or of dL and eL. Thus a 12-element symmetry 
group is evident, which is equivalent to that defined by Lock­
wood. Equation (2) is invariant for the four values of n that 
are possiQle for a Po. 

The conclusion is, that the two sets of equalities involv­
ing the parameters of the 6j coefficient explain, as to how the 
two sets of J"3(l)S are equivalent in describing the 144 sym­
metries. The advantage of canonical parameters of the 6j 
coefficient is that the set of 12 symmetries corresponding to 
an ni U= 1,12) will form a group. 

Note added in proof: Recently, the author has come to 

1974 J. Math. Phys., Vol. 19, No.9, September 1978 

know of the article by Dr. K. Srinivasa Rao in the Proceed­
ings of the VI Int. Colloquium on Group Theoretical Meth­
ods in Physics, Tubingen ( 1977). In this article Dr. Rao has 
also discussed the canonical parametrization of the 6j coeffi­
cient introduced by Lockwood. 
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On the equivalence of quantum mechanics and a certain 
class of Markov processes 

Mark Davidson 

Lawrence Berkeley Laboratory. Berkeley. California 94720 
(Received 29 August 1977) 

Some new results in the stochastic model of quantum mechanics are derived. The origin of the 
noncommutative algebra of quantum mechanics is given a simple interpretation within the stochastic 
model. Quantum expectations of mixed functions of coordinates and momenta are related to stochastic 
averages. 

I. INTRODUCTION 
It is well known that under certain restrictions, quan­

tum mechanics can be interpreted as a Markov process for 
classical coordinates. Various authors l

-
10 have derived 

Schrodinger's equation within the context of classical diffu­
sion theory. These works interpret quantum statistics or 
quantum indeterminacy as originating from the interaction 
ofnonrelativistic point particles with random forces. These 
forces must be present even in the vacuum. This view does 
not conflict with present understanding of nature, since 
vacuum fluctuations in quantum field theory are known to 
exist and are well verified experimentally. The random 
forces experienced by particles in the stochastic interpreta­
tion may be viewed as coming about due to random fluctu­
ations of the various fields in the vacuum. 

The techniques used to analyze stochastic models of 
quantum mechanics have their origins in the early works of 
Einstein and Somoluchowski who pioneered the modeling of 
Brownian motion. A more recent review has been given by 
Chandrasekhar. II For the more mathematically inclined, 
a number of texts deal with the general problem of stochastic 
processes. 12

•13 A review of the stochastic interpretation has 
been given by Jammer. I' 

The most rigorous and precise derivation of Schro­
dinger's equation has been given by Nelson. 2

.) He considered 
a certain class of Markov process typical of a diffusion the­
ory. He found that if the diffusion constant was proportional 
to film, then the nonlinear diffusion equations could be 
transformed into a linear Schrodinger's equation. For the 
class of models Nelson studied, the sample trajectories are 
continuous but not differentiable. It is not possible to attri­
bute an instantaneous velocity to a particle in his theory. In 
this paper we shall show that these properties allow a certain 
temporal ordering to be defined which allows one to relate 
arbitrary quantum operator expectations to stochastic aver­
ages. Noncommuting operators arise in a natural and phys­
ically appealing way. Finally, a way of extending Nelson's 
work to slightly complex times will be presented which 
makes the quantum theory and stochastic theory related in a 
very simple fashion. These results add credence to the sto­
chastic interpretation of quantum mechanics, and may also 
prove to be of some use in diffusion theory. 

In the next section some properties of the Wiener pro­
cess, the archetypical diffusion process, are presented. These 
results are generalized to Nelson's model and their implica-

tions discussed in Sec. III. Conclusions are presented in Sec. 
IV. 

II. A PROPERTY OF THE WIENER PROCESS 

Wiener processes are discussed in numerous texts. 15-17 

Let Wet) denote such a process with zero drift. That is 
W(t)- W(s) independent of W(r) for r<s, t, an dE (W(t» =0. 
Let us suppose that W(O) =0 identically. The following re­
sults have been shown: 

(a) W(t)- W(s) has a Gaussian distribution. 

(b) Some expectations are: 

(1) 

where v shall be referred to here as the diffusion constant, 

In =E exp[Jl W(t l ) ] X exp[J n W(t n]) 

=exp(!i~/iJj W(t)W(t) ). (2) 

For n even we find 

1 
2n/2(nI2!) ~ W(t l )W(t2) W(t)W(t4) 

X .. , X W(t n _ 1 ) W(t n ), (3 ) 

where ~p denotes a sum over all permutations. For n odd, 3 
vanishes. 

The following result is derived from 2 and 1 if tk=l=t1, 
'=I=k, 

hm -------- ---- I n =vln _ 2 . (4) . [1 J J I J J] 
In-In_I-->D. I n_ 1 JJn Jtn_ 1 I n JJn_ 1 Jtn 
In.Jn_l-->D 

Let us use the notation 

This notation is not meant to suggest that Wexists as a ran­
dom variable. It does not. We define for ii = 1 or 2 

Xj,(t) x· .. XxjH(t) 

lim fI OjPJE( W(t l ) X "'X W( t n», (6) 
tl+ ,-tr-+D. i= I 

tJ=t 
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It turns out that order matters for these functions. For 
example, 

. J 
W(t)W(t) = lim -E(W(tl) W(t2»=0, 

t,-t,-+O. Jt2 

If we extend the definition to sums by 

A+B=A+B, cA=cA, 

then we have 

W(t)W(t)- W(t)W(t) =v. 

(7) 

(8) 

This is quite suggestive of quantum mechanics. The follow­
ing much more general results follow from Eq. (4) and (6), 

f( Wet), W(t»( wet) Wet) - Wet) Wet) )g( Wet), W(t» 

=v f( Wet), Wet) )g( Wet), W(t» , (9) 

for arbitrary ordered polynominal functionsfandg. In other 
words, whenever [W, W] appears in expressions defined by 
(4), (5), and (6) it may be replaced by v. Loosely speaking 
we have 

[Wet), Wet)] =v. (0) 

This should be compared with the quantum mechanical 
result 

[mx,x] = -iii. (11) 

The diffusion constant v must be real, but still these results 
are extremely suggestive. 

The Wiener process also has a completeness relation. 
With the density p given by 

p(W,t)=E(c5(W - Wet»~), (12) 

with c5 the Dirac delta function, we have for t; < t, S; > t: 

f dW; E( W(tl)X"'X W( t n)c5( W- W(t») 

XE(W(sl)X,·,X W(sm)c5(W- Wet»~) 

=E(W(tl)X···X W(tn)W(SI)X"'X W(Sn»· 

(3) 

For the functions defined in (4), (5), and (6) this becomes 

fdw-1-1< Wet), W(t»c5( W - Wet»~ 
p(W,t) 

X c5( W - W(t»g( W(t) , wet)) 

= f(W(t),(t»g(W(t),(t» . (14) 

In the next section we consider a more general process 
for which these relations remain true. The restriction 
W(O) = 0 can be relaxed without changing any of these 
results. 

III .. A STOCHASTIC MODEL OF QUANTUM 
MECHANICS 

cesses yields a SchrOdinger type equation. Only processes 
with a single degree offreedom will be considered here. The 
processes he looked at were defined by the difference 
equation 

dx(t) = b(x(t),t>dt +d Wet), (15) 

which in integral form is 

x(t) =x(O) + f dt'b (x(t'),!') + W(t)- W(O) , (16) 

where b is a smooth function of its arguments and Wet) is a 
Wiener process. This class of processes is also discussed by 
Doobl2 and Breiman. 15 

Analogous to Eq. (6), time ordered functions can be 
defined [XI(t)=X(t), X2(t)=X(t)] 

n 

= lim nOj,(t)E(x(tl)X"'Xx(tn» 
t;+I-t(--+O+ i=l 

tl=t 

(17) 

(18) 

The following completeness results would be satisfied 
in a reasonable theory (They will be assumed true here. ): 

fdX -1-f(x(t),x(t»c5(x-x(t» c5(x-x(t»g(x(t),x(t» 
p(x,t) 

= f(x(t),x(t»g(x(t),x(t» , 

p(x,t) = c5 (x - x(t» , 

The following result follows from Eq. (15), 

lim ..!..E«x(t+.:i)-x(t) )x(t+€) 
.d-+O • ..1 
E-+O • 

.dIE-+O 

- (x(t +€ +..1) -x(t + €»x(t)(x(t) =x) 

lim ~(W(t+.:i)- Wet) )2) 
.d-+o • .:i 

=v. 

It follows in particular from this that 

x(t)x(t)-x(t) x(t) =v, 

and in general that 

f( x( t ), x( t ) ) [xC t ), x( t) ]g (x( t ), x( t ) ) 

= v f( x( t ), x( t ) ) g (x( t ), x( t ) ) 

so that once again we have the relation 

[x(t),x(t)] =v. 

Analogous to (15) is a backwards equation 

dx=b.(x,t) dt+dW., 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Nelson2
,J has shown that a certain class of Markov pro- where 
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b.(x,t) = lim ~E(x(t) -x(t -..:1) I x(t) =x), 
.1--->0..:1 

b(x,t) = lim~E(x(t+..:1)-x(t) Ix(t)=x). 
.1--->0..:1 

(26) 

(27) 

Two Fokker-Planck equations may be derived. They 
are 

or 

ap = -~(Pb)+'::""pll, 
at ax 2 

ap = -~b.)- v II 

at ax ~ , 

v a 
U=--ln(p) 

2 ax ' 

b+b. 
V=--, 

2 

b-b. 
U=--. 

2 

(28) 

(29) 

(30) 

(31) 

Equations (30) and (31) constitute two equations for 
three unknowns: b, b., andp. An additional equation is nec­
essary to define a solution. Nelson supplemented these with 
an equation similar to Newton's F=ma. First he defined 
forward and backward derivatives 

D.f(x,t) = lim ~E(j(xCt +..:1 ),t + 0) - f (xCt),t) 1 xCt) =X ) 
.1--->0 ..:1 

(
a a v a2 

) = -+b-+-- .f(x,t) , 
at ax 2 ax2 

(32) 

D • .f(x,t) = IimJ.-E(f(x(t),t) -f(x(t-..:1), t-..:1 )Ix(t)=x) 
.:1-.0..:1 

(
a a v a2

) = -+b--- - .f(x,t). 
at ax 2 ax2 

(33) 

He defines mean acceleration by 

a = !(DD. + D.D)x, (34) 

and he compeletes the system of equations by 

a 
ma=F= - ax ¢(x), (35) 

where ¢(x) is supposed to be the potential function for exter­
nal forces. This assumption has been criticized, 18 but a rebut­
tal has also been given. 19 We shall accept Nelson's model for 
the remainder of this paper. 

For this set of equations [( 30), (31), (35)], Nelson 
found the following solution. Writing 

p=¢*¢, 
he showed 

aR=~u 
ax v ' 

and 

as =J..-v 
ax v 
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(36) 

(37) 

(38) 

Ifv=lllm, with Il Planck's constant, then (38) takes the 
form 

ill
a

¢ =(i~)2¢+¢¢, 
at ax 

(39) 

which is Schrodinger's equation for a one-dimensional parti­
cle in a potential ¢. It follows that 

j(x(t» = f dx ¢*Cx,t).f(x)¢(x,t). (40) 

Nelson argued that (39) contains all the measurable infor­
mation of quantum theory (when generalized to higher 
number of degrees of freedom) because only approximate 
positions of particles are ultimately measured in an experi­
ment. It is still desirable to have a physical interpretation of 
expectations involving momenta. 

The quantum expectation of a general operator lis 

<¢ III ¢)= J dx eR-iS~ x, -ill! )eR+ is. (41) 

We will now show the following result for v=lllm, 

.f(x,mx) = fdxeR-St(x,Il!)eR+S. (42) 

Consider the commutation rule under the bar sign: [x,x] = v. 
v(Jlax) satisfies the same relation, [v (alax ),x] =V. This 
suggests that we seek an operator for mx of the form 
mv(al ax) + F(x), where F(x) is an as yet undetermined func­
tion of x. Let us try the choice 

.f(x,mx) = f dx¢*t(x,vm! +F(X»)¢. (43) 

In order that (43) be real for I real, it is necessary that 

F(x) = -is' + F'R' (44) 

where FR is real. We then have 

.f(x,mx) = JdxeR-F1x,vm !)eR+ FR • (45) 

We now show that FR=S. From (40) we have the result 

d- d 
_xn =- <t/1xn I¢) 
dt dt 

(46) 

or 

xxn-1+"'+Xn-1X =(1/!1 ~ xn-l+ ... +xn-l~ I¢)· (47) 

Substituting (45) into (47) yields 

FR=S, (48) 

from which (42) follows. This derivation is by no means 
rigorous. What we can say is that if (42) is satisfied, then the 
correct commutation rules emerge, and the relations be­
tween time derivatives are correct. 

Using (42), we derive the completeness relation [Eq. 
( 19)]. This follows by substituting (42) into ( 19) and inte­
grating. Thus, Eq. (45) is consistent with the completeness 
relation for Markov processes. Although our derivation is 
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not rigorous, it is the author's opinion that (42) must be 
correct. It can be rewritten 

f(x,mx) = f dx ¢*eiS - S !(x,ip)eS - iS¢. (49) 

These relations relate arbitrary quantum expectations to sto­
chastic expectations. Some simple examples are 

m2x 2 =m2fdx b(x)b.(x)p(x), (50) 

(51) 

In general, if 

< I fip,x) I ¢)=H(S,R), (52) 

where H is a functional, then 

f( -im x,x) =H(iS,R) . (53) 

These results extend the connection between stochastic 
processes and quantum mechanics. They may be of practical 
use in two ways: First they suggest a new way of calculating 
quantum expectations in terms of Markov processes, second 
they suggest new ways to study certain classical processes in 
terms of quantum expectations. There should be no problem 
to generalizing these results to higher numbers of degree of 
freedom. 

We now consider a modification of Nelson's model 
which makes the connection between quantum mechanics 
and Markov processes more transparent. We shall consider 
coordinates and momenta at complex times t + is in the limit 
s-O. Suppose that for t fixed, x(t+is) satisfies 

dx= -ids b(x,t+is)-i [W,(s+ds)- Wt(s)] , (54) 

where Wt(s) is a Wiener process in s for t fixed, and x(t) is 
real for t real. 

Analogous to Eqs. (6) and ( 17) we define an ordered 
expectation 

x·x"·Xx· J. Jo 

We find in this case the commutation rules 

[x,x] = -iv, [x ,x] = [x,x] =0. 

We also find that 

[x(t,),x(t2)]*,0. 

As an example consider 

[x(t+L1),x(t)] = -ivL1. 

(55) 

(56) 

(57) 

(58) 

Additional postulates are needed to achieve Schro­
dinger's equation for this case. For example, a consistent 
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theory might be possible with the additional assumption for t 
real, 

dx=b(x,t) dt+dW(t). (59) 

Equation (59) leads to Schrodinger's equation via Nelson's 
argument. When coupled with (54) and (55) we find 

!(x,mx) = f dx¢*(x,-imv :x )¢. (60) 

With v=fI/m the similarity to quantum mechanics is 
striking. 

Equations (54) and (59) may not be mutually com­
patible. It might be possible to derive Schrodinger's equation 
from Eq. (54) alone along with a suitable assumption relat­
ing mean acceleration to a potential. We shall defer a more 
detailed study of these complex processes to a future work. 

IV. CONCLUSION 

It has been shown that a noncommutative algebra can 
be defined for Markov processes of the type which lead to 
Schrodinger's equation. Quantum expectations involving 
both coordinates and momenta are thereby related to sto­
chastic expectations. These results add credence to the sto­
chastic interpretation of quantum mechanics. It is difficult 
to believe that the similarity between these two theories is 
coincidental. 

A method of extending the stochastic model of Nelson 
has also been given which continues the model to slightly 
complex times. The correspondence between quantum the­
ory and the stochastic model are extremely close in this case. 

Given the incomplete nature of nonrelativistic quan­
tum mechanics, the stochastic models must be extended to 
relativistic fields. Only then are new results likely to follow. 
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Several versions of the concept of critical percolation probability are discussed in the bond percolation 
problem on the square lattice. Critical probabilities are also employed as technical devices in the proofs of 
two new results. First, there is a critical probability PT below which all moments of the cluster size are 
finite. Secondly, an infinite connected cluster of open bonds exists with positive probability if and only if 
any angular sector contains an infinite connected cluster of open bonds with positive probability. An 
expression is derived for the expected number of open clusters per bond in the percolation model, relating 
to the problem of rigorously justifying a critical probability result of Sykes and Essam. 

1. INTRODUCTION 

This paper discusses the concept of a critical percola­
tion probability in the bond percolation problem on the sim­
ple quadratic lattice. A bond percolation process is a math­
ematical model of the random spread of a fluid through a 
medium, where the random mechanism is that each bond in 
the medium is open with probability P, independently of all 
other bonds. Numerous examples of percolation processes 
are supplied by Frisch and Hammersley! and Shante and 
Kirkpatrick. 2 

Various definitions of critical probabilities, arising from 
different interpretations of penetration of the medium by the 
fluid, are discussed in Sec. 2. Theoretical relationships and 
bounds for the values of these critical probabilities are 
discussed. 

Three new results concerning critical probabilities are 
presented, following definitions and preliminaries in Sec. 3. 
The first result, in Sec. 4, is that if the expected open cluster 
size is finite, then all moments of the cluster size are finite. 
The proof is obtained by defining a family of critical prob­
abilities, then showing that they are actually identical. The 
critical percolation probabilities of the entire lattice and of 
any positive angular sector are shown to be identical in Sec. 
5. In Sec. 6, an expression is derived for the expected number 
of open clusters per bond in the percolation model. An un­
verified assumption in the Sykes and Essam critical prob­
ability identification for the bond problem on the square lat­
tice relates to this clusters-per-bond function. 

2. CRITICAL PROBABILITIES 

Imagine the fluid being introduced at a single source 
site at the origin. If P is small, few bonds will be open, so the 
fluid will travel only a short distance before becoming com­
pletely blocked. If p is nearly one, the fluid may flow indefi­
nitely. The intuitive concept of the critical probability is the 
threshold value of p above which the fluid penetrates the 
lattice, and below which the fluid spreads only locally. 

There are, however, several versions of the critical 
probability appearing in the literature, which results in some 
confusion. Three definitions will be introduced in this sec­
tion, and others later, in proofs, for technical purposes. 

"Research supported in part by University of Minnesota Graduate School 
Research Grant 494-0350-4909-02 and by National Science Foundation 
Grant MCS74-05786 A02. 

Let .0/ n(P) denote the probability that at least n bonds 
are wetted by fluid from the origin. Since clearly 9 n(P) is 
monotonically decreasing in n, the limit 

9(P)= lim 9 n(P) (2.1) 

exists for all p. Evidently 9 (P), the percolation probability, 
represents the probability that fluid spreads from a single 
source site to wet an infinite set of open bonds. The most 
commonly accepted definition of critical probability is 

PH=inf!p:9(p) > OJ. (2.2) 

which distinguishes between the existence and nonexistence 
of infinite connected clusters of open bonds. 

Let C denote the size of the cluster of open bounds con­
taining the origin, that is, the number of bonds that are wet­
ted by fluid introduced at the origin. Then the expected clus­
ter size, with probability p that each bond is open, is given by 

EiC)= f 9 n(P)' 
n~l 

A critical probability PT is defined by 

PT=inf!p:E/C) = 00 j, 

(2.3 ) 

(2.4 ) 

and thus represents the threshold value of p above which the 
expected number of wet bonds becomes infinite. 

Since 9 (P) > 0 implies that the expected cluster size 
E/C) is infinite, clearly PT<PH' In fact, it is known that for 
the planar square lattice 

(2.5 ) 

the lower bound for PH due to Harris,J and the upper bound 
for PTa consequence of Lemma 2.2 of Wierman and Reh. 4 

(Throughout the remainder of this paper, all results should 
be interpreted to apply to the planar square lattice only.) 
Theoretical bounds due to Hammersley,',6 show that 

PH<0.646790 and PT>0.35321O (2.6) 

by using arguments involving the numbers of self-avoiding 
paths on the lattice. An interesting recent development is the 
discovery of the exact relationship 

PT+PH= 1 (2.7) 

by Seymour and Welsh.' It is widely conjectured that in fact 

(2.8) 
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Sykes and Essam8 consider a function describing the 
average number of open clusters per bond on the lattice, and 
define a critical probability PEas the location of a singularity 
of this function. Using several unverified assumptions, it is 
concluded that P E=! for bond percolation on the square 
lattice. An attempt to substantiate one of these assumptions 
is discussed in Sec. 6. 

The Sykes and Essam result has led to a folklore belief 
that the critical probability problem is completely solved for 
the bond problem on the square lattice. However, by the 
nature of the definition of P E' there is no known theoretical 
relationship between P E and either PH or PT' Thus, even if the 
Sykes and Essam assumptions are correct and P E =!, this 
provides no information concerning PH or Pr 

3. SPONGES AND ANNULI 

The m Xn sponge is the subgraph T(m,n) of the square 
lattice contained in the rectangle! (x,y): 1 <,x<,n, 1 <,y<,m l. 
Each of the points (I,y), 1 <,y<,m, on the left side is regarded 
as a fluid source, from which fluid percolates through open 
bonds in the sponge. The sponge crossing probability 
Sim,n) is the probability that at least one of the points (n,k ), 
I<,k <,m, on the right side becomes wet by fluid. 

Define the dual sponge T*(m,n) by placing a site at each 
of the points U+!,j+!), i= 1, ... ,n-I,j=O,I, ... ,m+ 1, and 
connecting these sites with bonds parallel to the coordinate 
axes. A bond in T*(m,n) crosses exactly one bond of the 
square lattice, and is open if and only if the bond crossed is 
open. A fundamental property of this dual relationship is 
that either a connected path of open bonds crosses T(m,n) 
from left to right, or a connected path of closed bonds crosses 
T*(m,n) from top to bottom. 

In the percolation model, since the events of existence 
of these crossing paths are mutually exclusive, the probabil­
ities of the events add to unity. Each bond in the dual 
T*(m,n) is closed with probability I-p, so the probability 
that a closed path crosses the (n-l)X(m+ 1) sponge 
T*(m,n) is SI-in -I,m + 1). Thus, the duality leads to the 
conclusion 

(3.1 ) 

Seymour and Welsh' introduced the critical sponge 
probability Ps' defined by 

ps=inf{p:li~~s~pSin,n+ I»O}. (3.2) 

As a tool in proving their main result, it was shown that 

Ps=PT<'!· 
Let R (n) denote the annulus of the square lattice bound­

ed by the square Cn on the outside and Dn on the inside, 
where Cn consists of portions of the lines 

y= -3n+ 1, x=3n, y=3n, and x= -3n+ 1, 
(3.3 ) 

while D n consists of portions of the lines 

1980 

y=-n+l, x=n+I, y=n+I, and x=-n. 
(3.4) 
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As with the sponge, a dual annulusR*(n) consists of the 
sites U + !,j +!) which are connected by bonds crossing the 
bonds of R(n), with each bond open or closed depending on 
the bond crossed in R(n). 

A circuit is a path of bonds which originates and termi­
nates at the same point. Duality properties imply that either 
there is a circuit of closed bonds in the dual annulus R*(n) 
surrounding Dn or there is a path of open bonds from Cn to 
Dn inR(n). 

The key to the main theorem of Seymour and Welsh is 
the following result. 

Lemma 3.1: The probability that there exists an open 
circuit in the annuls R(n) which encloses Dn and is enclosed 
by Cn is at least 

Si2n,2n + 1)12 [ 1-Y 1-Sp(2n,2n + 1) ] 64. (3.5) 

Harris used a similar result concerning the existence of 
open circuits in annuli; however, he did not obtain a relation­
ship between the annulus size and the probability of the exis­
tence of a circuit. 

4. MOMENTS OF CLUSTER SIZE 

In this section, the concept of critical probabilities leads 
to an interesting result about the higher moments of the clus­
ter size. We show that P T distinguishes between more than 
just the existence or nonexistence of the expected cluster 
size, by showing that all moments greater than the first are 
finite if P <PT" A precise statement follows. 

Theorem 4.1: Let C denote the size of the cluster of open 
bonds containing the origin. Then either E(ca) < 00 for all 
a;;d, or E(Ca) = 00 for all a)o 1. 

In the proof of this result, a critical probability is de­
fined for each moment, representing the value of P where the 
moment becomes infinite. The technique of Seymour and 
Welsh can then be used to show that they are actually all 
equal. 

Begin by defining, for each a)o I, the critical probability 

PT'=inf{p:EiCa) = oo}. (4.1) 

The key to the proof is the following Lemma, a modified 
version of Lemma 6 of Seymour and Welsh. 

Lemma 4.2: If E > 0 andp > PT" a)o I, then for infinitely 
many values of n, 

[1-Si 2n,2n+l)jI2[I-Y Si2n ,2n+l) ]64 

<,1-1/320 +E. ( 4.2) 

The lemma is proved by contradiction. Supposing the 
conclusion to be false, choose an integer N so large that for 
alll)o3N , the probability that there is a closed circuit in the 
dual annulus R *(1) is at least 1-1/32a + E. However, a closed 
circuit in the dual means that there is no open path across 
R(I) from interior to exterior. Letting Dk denote the event 
that there is an open path crossing R(3 k

) from the inside to 
the outside, we have 

(4.3 ) 

By considering the sequence of disjoint annuli R(3k
), 
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the events Dk are independent. For an open path to reach 
from the origin to the outside of R *(3n), all the events D k , 

k = 1,2, ... ,n, must occur. Thus by counting the bonds inside 
R (3 k)'s outer boundary, 

n-I 

E(Ca).;;;;(4x32N)a+ I (4x3 2n)a n P(Dk) 
n>N k=N 

.;;;;4ax32Na + I4aX32na(1I32a_E)n-N (4.4) 
n>N 

< 00, 

which contradicts P > PT'" 

An equivalent statement of Lemma 4.2 is that P > PY"'" 
implies 

lim supS/2n,2n+ 1);;;>8a >0. (4.5) 

By the definition of PS' it is clear that P;;;>Ps' if P > PY"'"' Hence 
we may conclude that PT";;;>Ps for all a;;;> 1. 

Since E/C) = 00 implies E/Ca ) = 00 for all a;;;> 1, clear­
ly PY",';;;;PT=P, for all a;;;> 1. 

Together, these conclusions show thatpp=PT=P, for 
all a;;;> 1, from which Theorem 4.1 follows. 

5. INFINITE CLUSTERS IN QUADRANTS AND 
SECTORS 

The critical probability PH also represents more than 
just the threshold between existence and nonexistence of an 
infinite cluster of open bonds. Harris considered the ques­
tion of whether an infinite cluster exists in a quadrant of the 
square lattice. Actually, when P > PH' with probability one 
there exists a connected infinite cluster of open bonds in any 
angular sector, i.e., [(r,O): r;;;>O, 0.;;;; 0.;;;; a I in polar coordi­
nates for any a > 0. The demonstration given here is for a 
quadrant, for convenience in notation. 

Consider the following sequence of sponges in the first 
quadrant. If k is an even integer, let Bk denote the 2k+ 1 X 2k 
sponge T(2 k + 1,2k). If k is odd, Bk will denote T(2 k ,2k + I). 
Each sponge is twice as long as it is wide, but the orientation 
with respect to the coordinate axes alternates with k. 

The method of proof is to show that for all sufficiently 
large k, the sponge B k is crossed lengthwise by a path of open 
bonds. Since such open paths in successive sponges Bk and 
B k + 1 must cross, an infinite collection of these open paths 
will then link together to form an infinite cluster of open 
bonds in the first quadrant. 

Using the duality properties, it is sufficient to show that 
for only finitely many k does a path of closed bonds cross the 
dual spongeB~ across its width, whenp > PH' Notice that, by 
Theorem 4.1,p > PH implies I-p <Pn so the cluster size for 
closed bonds has all moments finite. 

The dual spon~e B~ is a (2k + 1) X (2k+ 1 - 1) sponge. 
From each of the 2 + 1 - 1 sites on one side, the probability 
of crossing the sponge B~ with closed bonds is no larger than 
the probability that the given site is in a cluster of at least 
2k+ 1 closed bonds. Hence the probability that the dual 
sponge is crossed by closed bonds is at most 

1981 J. Math. Phys., Vol. 19, No.9. September 1978 

using Markov's inequality. 

Therefore, the series of probabilities of these events 
converges, 

00 1 
E(C) I ~< 00, 

k=12 
(5.2) 

so by the Borel-Cantelli Lemma, with probability one only 
finitely many of the events occur. 

6. CLUSTERS PER BOND 

Given a finite region of the square lattice, the number of 
open clusters per bond is simply the number of distinct clus­
ters of open bonds in the region divided by the number of 
bonds in the region. One of the assumptions of Sykes and 
Essam was that the expected number of open clusters per 
bond converged to a limiting value (dependent on p) as the 
region expands. Grimmett' has provided a rigorous justifica­
tion for this assumption. This section treats Grimmett's re­
sult and derives an expression for the limit function. 

Let Rmn be the rectangular region in the first quadrant 
bounded by the lines x = 0, x = m, y = 0, and y = n. The bonds 
on the lines x=m andy=n are not included in R mn, but 
those on x=O andy=O are, so there are 2mn bonds in Rmn. 

Cmn(k) is the number of open clusters of size k con­
tained in Rmn. 

C(k) is the number of open clusters of size k in the entire 
lattice which have at least one bond in Rmn. 

If B is a particular bond, Nmn(B) is the number of bonds 
in Rmn which are in the open cluster containing B. 
[N mn(B) = ° if B is closed.] N(B) is the number of bonds in the 
open cluster containing B. 

Finally, 

and 

C= f C(k). 
k=1 

Notice that an open cluster in the lattice may give rise to 
several distinct open clusters inRmn' but each open cluster in 
Rmn corresponds to just one open cluster in the lattice. 
Therefore, for all configurations UJ of open and closed bonds, 
one has 

(6.1 ) 

A weakened form of Grimmett's result, in the bond for­
mulation, may be stated as follows: 

Theorem 6.1: lim [Cmn(UJ)/2mn 1 =O(P) almost sure-
m,n_oo 

ly and in U for all r> 0, where 

(6.2 ) 

Grimmett proved that ()(P) is continuous inp, and that () is 
differentiable at P = ° with Of (0) = 1. The following identifi­
cation of ()(P) provides additional information. 
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Theorem 6.2: O(P)= f (lIi)PiN(B)=i). 
i=1 

To see this, first notice that Cmn cannot exceed C by 
more than the number of open bonds in the boundary of R mn' 

which is defined to consist of all bonds lying outside of the 
rectangle defined by the lines x=O, x=m,y=O, andy=n 
which have exactly one site on the boundary of this rectan­
gle, plus the bonds along the boundaries x = m and y = n of 
this rectangle. Thus 

Cmn <C+(3m+3n+4). 

By inequality (6.1), 

(6.3 ) 

where' A is the indicator random variable of the event A, 
which is 1 if A occurs and zero otherwise. Then 

E/Cmn
) > f ~Pp[N(B)=i]. 

2mn i=1 / 
(6.5 ) 

For an inequality in the opposite direction, note that 
2mn 

Cmn = L Cmn(i) 
i=1 

00 1 
= L -:- L '[Nmn(B)=ij (6.6) 

;=1 1 BERmn 

00 1 
= L L -:-'[Nmn(B)=ij' 

BERmn i=1 / 

Fix a configuration IlJ of open and closed bonds. For any 
bond B in a cluster which is totally contained in R mn , we have 

00 1 00 1 L -:-'[NmiB) = iJ(llJ)= L -:-'[N(B) = ij(IlJ). (6.7) 
i=1 / i=1 / 

The bonds contained in clusters which are not entirely 
in Rmn can form no more clusters than the number of open 
bonds in the boundary of R mn, since each cluster must leave 
Rmn through some open bond in the boundary. Letting aR 
denote the boundary of R mn' for bonds of this type, we obtain 

00 1 L L -:-1[Nmn(B)=ij(IlJ)< L 21[Bisopenj(IlJ). (6.8) 
B i=1 / BEaR 

This is true because the sum on the left-hand side over 
bonds in any particular Rmn cluster is unity, but one or more 
of the open bonds in oR serves as an exit from Rmn' The 
factor of two enters because a single open boundary bond 
may be an exit for at most two R mn clusters. By (6.6) and 
(6.8), 
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so by (6.3), 

E/Cmn
) < f ~PiN(B)=i)+2p (3m+3n+4). 

~n ~I/ ~n 

Letting both m and n tend to + 00 yields 

00 1 L ~P/N(B)=n=8(p), (6.10 ) 
i=1 / 

proving the representation is valid. 

Applying Abel summation to this expression yields 

00 I 
8(P)=p- L -. -. -P p<N(B»n 

i=2/(/-I) 

(6.11) 

Since P p(N(B»O is monotone increasing inp, this shows 
that 8 (P) is differentiable almost everywhere with O'(P)< 1. 

For values of p near zero, the series in (6.11) is clearly 
o(P), so 0'(0) = I. 

Noticing that P/N(B»i»pi for any p and i, one 
obtains 

00 1 . 
8(P)<p- L -. . -p'. 

i=2/(/-I) 

(6.12 ) 

A calculation gives the bound 

8(P)< -(I-p)ln(1-p), (6.13 ) 

so that in particular, for all pE[O, 1], 

8(p)<l/e. ( 6.14) 
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We extend Birkhoff's pointwise ergodic theorem from classical mechanics to the overlap with quantum 
mechanics. 

1. INTRODUCTION 
Ergodic theory was invented to elucidate the dynamical 

behavior of nonrelativistic many-body systems as described 
in a classical mechanical formalism. Soon thereafter it also 
was called upon to perform similar service for the same sys­
tems treated with quantum mechanics. 

We will demonstrate below what we believe is the first 
nontrivial analog for quantum systems of Birkhoff's 
pointwise ergodic theorem I-nontrivial in that it does not 
require any special properties of the dynamics, in particular 
it does not require discrete spectrum of the Hamiltonian. 2 As 
there have been many misdirected versions of quantum ergo­
dic theory, we feel it appropriate to state our objectives and 
results carefully. 

In order to describe problems in classical and quantum 
mechanics in a parallel fashion it is convenient to use the 
algebraic formalism3.4 in which the observables of the phys­
ical system are represented by the self-adjoint elements of a 
norm-separable C*-algebra A with unit I, and the physical 
states by a subset of the set S of (mathematical) states of A; 
f{a), for fin S and a in A, then represents the expected value 
of a when the system is in the state! The classical mechanics 
of a system is described with an AbelianA, and the quantum 
mechanics with a non-Abelian A. The detailed structure of 
the dynamics is only imperfectly understood at present for 
interesting physical systems, but we know from simple ex­
amples4-6 that it cannot be grossly misleading to assume that 
time evolution is represented by a one-parameter group 
{at I tE R} of * -automorphisms at of A. Thus the expectation 
value at time zero,f{a), would evolve in time t in the Heisen­
berg picure tof{ata) or, equivalently, in the Schrodinger 
picture to a1(a), where at is the dual of at. 

Unfortunately, this structure for the dynamics, which 
we will call "C*-dynamics," has been shown7

•
g to be phys­

ically untenable in many imporant cases, while there is evi­
dence to support hope that a certain modification might be 
generally acceptable.9.l0 This more general form, which we 
will term W*-dynamics, requires certain ( physically) dis­
tinguished statesf,a, which are time invariant and such that 
in each of their GNS representations, 1T,a, of A the dynamics 
is represented by one-parameter groups {ap It ElR} of *-au­
tomorphisms of the W*-algebras 1T.a< A )". Therefore, for a 
statefwhich is the restriction toA ofa state (also denotedf) 
in the predual of some 1T.a< A )", the dynamics is again of the 
formf{ a )-f{ ata ) orf{ a )-a1( a ). It is, however, now an 
important problem to make sense of the evolution "ar' iffis 
not of the above type. This problem was considered in Refs. 7 
and 11 but only partially solved, in a sense described in later 
sections. 

For simplicity, in the remainder of this section we will ignore 
the evidence of the last paragraph and assume not only a C*­
dynamics onA but also the appropriateness of a discrete time 
variable, n, so that the "orbit" of an initial statefwould be 
{anf InEZ}. ( There are certainly some physically interest­
ing models where this is justified"·6 

) 

A common approach to understanding the gross dyna­
mical behavior of physical systems ( particularly in statisti­
cal mechanics) is through "time average" quantities of the 
form 

1 N-J 
lim - L anf{ a). 
N~oo N n~O 

Of course, before such quantities can be convincingly manip­
ulated, it is necessary to prove their existence. Historically, 
ergodic theory was invented to solve what we call the 

Primary ergodic problem: Prove, for as many states fin 
Sand observables a in A as possible, the existence of 

1 N-J 

lim - L anf{a). 
N~oo N N~O 

The most significant results in this direction actually corre­
spond to the special form of the 

Secondary ergodic problem: Prove, for as many statesf 
in S as possible, the existence of 

(1) 

In particular, the results referred to fall in two classes, 
"mean" and "pointwise" theories. For both one assumes giv­
en a stateJin S which is a fixed point of a. Mean ergodic 
theorems then prove ( 1 ) for a relatively small class of states 
f, mathematically and physically similar to1. namely for fin 
L 1, the norm closure of 

Pointwise ( or individual) ergodic theorems prove ( 1 ) for 
'jalmost every" state f in S. 

Mean ergodic theory in the above sense was developed 
for Abelian A only (i.e., for classical mechanical systems) in 
Refs. 12 and 13 and in the general non-Abelian (i.e., quan­
tum mechanical) setting in Refs. 14 and 15. The pointwise 
theory was developed for Abelian A in Ref. 1, and it is the 
effort to obtain a satisfactory noncom mutative generaliza­
tion of this result (i.e., satisfactory quantum version) which 
is the subject of this paper. For concreteness it is perhaps 
convenient to keep in mind the above problems for the three-
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dimensional Heisenberg model on an infinite lattice,· a high­
ly nontrivial model where the above considerations are easily 
formulated and of definite interest. 

2. NOTATION AND AN EXTENSION OF LANCE'S 
THEOREM 

Throughout this section, M will denote a W*-algebra.! 
a faithful state in the predual M. of M, and A a a-weakly 
dense, norm-separable sub-C*-algebra of M containing the 
unit I. Further, a will denote a *-automorphism of M such 
that its dual a haslfor a fixed point. 

In this notation, Lance has proven'6 ( see also Ref. 17 ): 

Theorem 1: There exists a norm continuous linear pro­
jection T: M--..M and, for each finite subset A' of A, a se­
quence {PNEN} of projections in M ( the sequence depen­
dent on A' ) such that limn. Jt P n ) = I and 

[
1.v1 ] 

lim II - L a"( a )-- Ta Pili =0 
'\'X N n 0 

for each a in A' and} in N. 

As our first step we prove the following related result. 

Theorem II: If we further assume that lis tracial, then 
the above sequence [Pj liEN I can be chosen independent of 
A'~A. 

Proof Let [a k I kEN I be a norm dense subset of A. For 
A' being the singleton [a k I , let [Pl k ) liEN I be the sequence 
guaranteed by Theorem I. By choosing a subsequence if nec­
essary for each k, we can assume that 

j[P,.( k )] > 1- 1I2kl j. 

Define 

Qj= A A P,,( k )_ 
L·I n-; 

Therefore 

I-Qj= V V (I-P,,(k», 
k?1 n >j 

so using the normality of land (Ref. 18;2.1.5) (which is 
perhaps the crucial step for which we seem to need Ito be 
tracial ), 

J(I-Qj)<'2. 'ilu---p,,(k» 
"- > I n _,/ 

'" L 'i 1I2k ~ " = 1/21 -->-0 as}-,,- 00 

". I '''j 

i.e.,limj .",1< Qj)= 1. Since Q/(Pi k) for all} and k, it is 
clear that 

[
It.. 1 ] 

,;i~,11 N,f;o (an-T)ak Qjll=O 

for every k. 

Now given any fixed a in A,) in Nand (; > 0, one can choose k 
such that Iia -akll < E/4, and N, such that 
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for all N> N I • 

Therefore 

<E/2+€/2=€ 

The advantage of having [Pj liEN I independent of A' is 
to avail ourselves of the following ideas based on Segal's non­
commutative integration theory. 19 

3. APPLICATION TO THE ERGODIC 
PROBLEM 

Throughout this section we use the notation of Sec. 2 
with the further assumption that lis tracial. We will also 
need the following notation from Refs. 7 and II. 

Definition. A sequence [Pj liEN I of projections Pj in M 
will be c~lled an exhaustion if: ( a ) Pj + 1 :2 Pj for alli, and ( b ) 
limJ_",j{ Pj )= 1. 

Definition: A subsetS' of the state space S of A is said to 
contain/-almost every state, or to be offull/-measure, if 
there exists an exhaustion [Qj I EN I such that 

-u {f r I fEM .,suppf~Qj}' 
J _.·1 

wherefr is the restriction to A off, and the closure is with 
respect to the w*-topology of S. The complement of a set of 
full/-measure is of/-measure zero. 

As demonstrated in Ref. 11, the collection S'of all sets of 
full/-measure is closed under countable intersection. Also, it 
is proven in Ref. 7 that if A ( and therefore M) is Abelian and 
X is the set of pure states on A in the w*-topology, so that 
A =C( X) and lis ( integration with respect to ) a regular 
Borel probability measure on X, then every set in S'contains 
'jalmost every" point of X in the usual measure theoretic 
sense. The main result of Ref. 11, which we need at this 
point, is the noncommutative generalization ofthe von Neu­
mann-Maharam theorem, namely that any *-automor­
phism of M, for example a, is implemented by or induces a 
canonical point transformation on S defined/-almost every­
where. ( The point transformation is "essentially unique" in 
that any two such transformations would have to agree/­
almost everywhere. ) Since the transformation is canonical 
we will use for it the intuitive notationf-'>-ii f 

The generalization of the above from a single *-auto­
morphism to a group of *-automorphisms ( in particular to 
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the cyclic group !anlnEZ) )iscontainedinRef. 7. Thus given 
a on M, we have a canonical "orbit" ! a'1l nEZ) defined for 
!-almost every fin S, defining a set Sc;;;,S. Let S~Sbe the set 
offull!-measure defined by the exhaustion of Theorem II. 

With the above notation we now prove 

Theorem III: For !-almost every fin S, the following 
limit exists: 

( 2 ) 

_ = Proof Let I P)JEN) be an exhaustion corresponding to 
Sf'S (defined above) and letf=w* -limyir, wherefyEM. 
and suppfy c;;;,Ppi fixed. For each a in A and integers Nh iV" 

I_I_Nfl anf(a)--l-"tl ar/f(a) I 
iV, n~o iV, n~O 

l

IN, - lIN, - I I 
=lim - I a".r;,(a)-- I anir(a) 

y iV, n~O iV, n~O 

)
1 N,-I I 

=lim - I [a".t;,( a)] -fr< Ta) 
y iV, n~O 

1 N,-I I -- I [a"ir( a )-fy( Ta)] 
iV, n=O 

=lim/fy[_l_Nfl (ana-Ta) 
y iV, ,,+0 

__ I_Nfl (ana-Ta)]/ 
iV, n=O 

--+0 as iV"iV,-+oo. 
The existence of the limit (2) is then evident from the com­
pleteness of S in the w*-topology. 

4. PHYSICAL ASPECTS 

Lance's Theorem I is an ergodic theorem concerned 
with "time averages" of operators; Theorem III is an analo­
gous result (but under the added assumption thatlbe tra­
cial ) for time averages of states. As was emphasized in the 
introduction, aside from their inherent interest there is an 
added significance for results of the latter form, determined 
by their widespread utility in physics. We need to comment 
further on this point. 

Assume a C*-dynamics onA, with a continuous or dis­
crete time variable t. For simplicity further assume at =yt 
for all approriate t, where ( y' I SElR) is a strongly continuous 
one-parameter group of *-automorphisms of A, letlbe a 
faithful state on A fixed by all at, and let 1T be the GNS 
representation of A associated withf Iflis tracial ( or KMS 
as defined below) then the at extend by continuity to *­
automorphisms of the W*-algebraM=1T(A )" andlextends 
by continuity to a faithful, normal, tracial ( or KMS ) state 
onM. 

The "usefulness" of Theorem III then rests solely on 
the appropriateness of the assumption thatlbe tracial. Here 
however there is some difficulty. In any form of measure 
theory the concept of a set being "of!-measure zero" is only 
useful to the extent that such sets are in practice negligable, 
which depends essentially on the particular f For quantum 
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mechanical applications then, before Theorem III can be 
used effectively one must determine a physically relevant 
tracial/, one for which sets "of!-measure zero" would be 
convicingly small or negligable in relevant calculations. 
Such states must ( and do ) occur corresponding to the infi­
nite temperature state, as can be seen by taking the limit/3--+O 
in the canonical ensemble. Physically such a state can clearly 
be used to study qualitative features at high temperature. As 
this is the regime where classical and quantum mechanics 
coincide, our results describe, physically as well as math­
ematically, the overlap between classical and quantum 
behavior. 

Finite temperature states, which are not tracial, there­
fore represent the next frontier, and it would be of great 
value if the condition thatjbe tracial could be dropped from 
Theorem III; but this also does not seem highly probable at 
present. 

One intermediate problem however, which does not 
seem entirely hopeless and the solution of which would be of 
definite physical interest, would be to prove the results of 
this paper forjbeing a KMS state, where we define this latter 
notation as follows. For each a, b in A and d> 0, we define 
the functions 

Fab:SElR-+f( bra) 

Gab:SElR-~fi [y'a]b ) 

ed:sElR-+exp( ds12 ), 

Then we say lis KMS if there exists f3 > ° such that 
Fab =e 2/ij ab' where Fob and fa" are the Fourier transforms 
of the respective functions considered as tempered distribu­
tions.2(}-2' Noting that a trace state could be considered a 
KMS state corresponding to f3 = 0, we conclude with the 
question: Can Theorem II be extended by replacing the as­
sumption thatlbe tracial with the assumption thatlbe 
KMS? 
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Generalized C -metric 
Frederick J. Ernst 

Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 
(Received 8 June 1977) 

We describe a procedure for generalizing static axially symmetric solutions of the vacuum Einstein field 
equations, and employ this procedure to append an external gravitational field to the C -metric black hole 
solution, We conjecture that if the strength of the appended gravitational field is chosen appropriately, 
our generalized C -metric will serve as a better model for an accelerating black hole than the original C­
metric, 

In spite of the fact that sixty years have elapsed since 
WeyP showed how all static axially symmetric solutions of 
Einstein's vacuum field equations might be constructed pro­
ceeding from solutions of Laplace's equation, surprisingly 
little effort has been devoted to the identification of those 
solutions which might possess some physical relevance. As 
recently as 1970 Kinnersley and Walker2 succeeded in show­
ing that the C-metric, discovered in 1918 by Levi-Civita,J is 
very close to being the field of an accelerating black hole. The 
present author' showed that the undesirable nodal singular­
ity of the charged C-metric can be eliminated by employing a 
Harrison-type transformation in order to append a suitably 
chosen electric field, suggesting that Kinnersley and Walker 
were correct in presuming that the nodal singularity was due 
to the neglect of a physical origin for the acceleration. 

Recently we have turned our attention to the analogous 
problem for the uncharged C-metric, speculating that the 
nodal singularity might be eliminated if a suitably chosen 
gravitational field were appended. We discovered that the 
procedure ofWeyl, when adapted to this type of problem, 
takes on an unexpectedly elegant form, to which we should 
like to draw the reader's attention. 

After developing the general procedure we shall illus­
trate it using the C-metric as our example, Naturally, the 
procedure can be applied to any static axially symmetric 
vacuum solution, but it would be very difficult to justify pub­
lication of most solutions so generated. However, for one 
particular choice of the appended gravitational field 
strength we conjecture that our generalized C-metric will 
serve as a better model for an accelerating black hole that the 
C-metric itself, since a physical origin of the acceleration will 
have been provided. 

I. THE GENERAL PROCEDURE 

We begin by considering any static axially symmetric 
vacuum field, choosing the coordinate system so that 

(1) 

where h, I, and/are functions of Xl and x 2 alone. It is conve­
nient to introduce a complex differential operator 

(2) 

and two auxilliary real fields Land F defined (up to additive 
constants) by the relations 

VL=iVlnl, 

VF=iVlnj, 

where 

(3) 

(4) 

(5) 

has the geometrical significance of being the norm of the 
Killing bivector. That such fields Land F exist is guaranteed 
by the vacuum field equations! 

Weyl himself showed I that one can always choose Xl =p 
and x 2 =z, where z is given (up to an additive constant) by 
the Cauchy-Riemann equations, 

vz=iVp· (6) 

However, it is generally rather inconvenient to choose Xl and 
x 2 in this fashion, Nevertheless, comparing Eqs. (3) and (4) 
with Eq. (6), we see that one may always write 

z=!(L+F). (7) 

Naturally this in itself would scarcely justify the introduc­
tion of the two real fieldsL andF. However, we shall see that 
those fields are more generally useful. 

Following Weyl's procedure we introduce auxilliary 
fields ¢ and y such that 

(8) 

The field ¢ satisfies Laplace's equation, while the field y is 
determined by the relation 

(Vy) (Vp) =p(V¢)2· (9) 

[Weyl actually employed the canonical p - z coordinates 
when he wrote out relations equivalent to our Eq. (9).] 

It is easy to see that the assignments 

¢=kz, y= _!k2p2, (10) 

provide a solution of the vacuum field equations. Therefore, 
taking advantage of the linearity of Laplace's equation, we 
may modify our original metric by replacing the field ¢ by 
¢+kz. Since, however, Eq. (9) is not linear in the field y, the 
modified field y will not be simply the original field y minus 
!k2p2, There will be in addition a contribution DY, where 

(VDY)(Vp) =2kp(V¢original)(VZ). (11) 

However, Eq. (6) may be employed in order to obtain the 
simpler equation 
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VDy= 2ikp (Vtforiginal)' (12) 

Finally, comparison ofEq. (12) and Eq. (4) yields the re­
markable result that 

Dy= kF + con st. (13 ) 

The requirement of "elementary flatness" in the neighbor­
hood of the symmetry axis fixes the additive constant; if the 
original metric ( 1 ) satisfied this criterion, then the constant 
in Eq. (13) should be set equal to zero. 

Summing up our results, we see that given any static 
axially symmetric vacuum field ( 1 ) we can generate another 
such solution with the line element given by 

ds2 = hek (F -L )e- k 'iIJ:(dX')2 + (dx2)2) 

+le-k(L +F)(dx1)2_fek (L +F)(dx4)2. (14) 

The constant k is a measure of the strength of the appended 
gravitational field, which is roughly speaking in the negative 
z direction. 

II. THE GENERALIZED C-METRIC 

In order to apply the procedure described in the preced­
ing section to the uncharged C-metric, 

dS2=(x+yt2 [ (dxy + (dyy 
A(x) B(y) 

+ A(X)(dZY-B(Y)(dt)2], (15) 

it is merely necessary to replace Eq. (15) by 

dS2=(x+yt2 [ ek(F-L)e-k'(x+Y)'AB (d;2 + d;2) 

+ Ae- k(L+F)dz2_Bek(LH)dt2]. (16) 

(The coordinate z employed in the C-metric has nothing to 
do with Weyl's canonical coordinate. Rather it is an angular 
coordinate. ) 

The fields Land F are readily evaluated using Eqs. (3) 
and (4). Observing that 

A(x)= l-x2-2ma x 3, 
(17) 

B(y)= -1 +y2-2ma y3, 
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one obtains the remarkably simple results 

L= -[(x+yt2B(y)+2may), 

F=(x +yt2A(x) + 2ma x. 

(18) 

In Ref. 2 the C-metric was interpreted as the field of an 
accelerating "point particle," with a singularity which "in 
every way resemble(s) the Schwarzschild singularity." Ac­
tually, in Sec. IV of Ref. 2 it was found that the singularity 
structure of the C-metric is not quite what one would expect 
for an accelerating black hole; there exists a nodal singular­
ity except when the acceleration parameter vanishes. In Ref. 
4 we established that this nodal singularity could be elimi­
nated from the charged C-metric if a suitable electric field is 
introduced in order to give a physical basis for the 
acceleration. 

The method of analysis employed in Sec. IV of Ref. 2 
can also be applied to our generalized C-metric (16). We 
conjecture that the nodal singularity will disappear when 
k = 1. This conjecture is based upon the expectation that for 
k = 1 the appended gravitational field should provide a phys­
ical basis for the acceleration of the "point particle" source 
of the C-metric. 

Regardless of whether our conjecture is proved or dis­
proved, we hope that our method of construction of the gen­
eralized C-metric will be of some interest. 
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Ideal vortex motion in two dimensions: Symmetries and 
conservation laws 
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Each of the conservation laws of the motion of a system of vortices in a two-dimensional ideal fluid are 
shown to be uniquely associated with one of the symmetry transformations of the system, one of which 
can be a scale transformation. In the case of an infinite fluid with no boundaries the five symmetry 
transformations are: (a) two independent translations in space, (b) spatial rotations, (c) translation in time, 
and (d) the scale transformation t' = e 2"t, z', = e "z" where '1) is real and Zk are the positions of the 
vortices in the z plane. Two cases of reduced symmetry are examined: the upper half-plane and the 
interior of the unit circle. 

I. INTRODUCTION 

Interest in the motion of vortices in a two-dimensional. 
ideal fluid was initiated in the late 19th century by mathema­
ticians and physicists such as Helmholtz. Kirchhoff. Stokes. 
Routh, Kelvin, and Thomson. Much of this early work has 
become classic and is covered in the standard textbooks on 
hydrodynamics by Lambl and Milne-Thomson, 2 as well as in 
other less well known works. 3 A treatise on the motion of 
vortices in two dimensions in an ideal fluid with arbitrary 
boundaries has been produced by Lin: who also reviews 
some of the early literature. 

It was recognized by the early workers that the equa­
tions of motion of a system of vortices could be put into 
canonical form by introducing a function which served as 
the Hamiltonian of the system and defining appropriate ca­
nonical coordinates and momenta. They also found five con­
stants of the motion of vortex systems in an infinite fluid. 
Most of the literature deals with finding solutions to the 
equations of motion with various boundaries and initial 
conditions. 

This paper introduces a Lagrangian formalism to dis­
cuss vortex motion. whereby the equations of motion of a 
system of vortices may be viewed as arising from the princi­
ple of least action involving a suitable Lagrangian function. 
The use of this formalism allows the association of the con­
stants of the motion with the symmetry transformations of 
the system in the usual way, and also reveals a nonstandard 
result: There is a conservation law of vortex motion associat­
ed with a symmetry transformation which is a transforma­
tion of scale. Many physical systems have symmetry trans­
formations which are scale transformations, but it is not 
always possible to associate a conservation law with this 
symmetry. A consequence of this is that. in most of the litera­
ture on Noether's Theorem,s scale transformations are dis­
missed as having no importance vis-a.-vis conservation laws. 
if they are discussed at all. 

The existence of this non-standard result makes it nec­
essary to briefly review the least action principle of dynamics 

aJPresent address: Defense Research Establishment Atlantic, P.O. Box 
1012, Dartmouth, Nova Scotia, Canada, B2Y 3Z7. 

in Sec. II, including the definition of symmetry transforma­
tions. The usual test for a symmetry transformation is 
quoted. along with the statement of the associated conserva­
tion law. Symmetry transformations involving a scaling of 
the Lagrangian must be treated separately. and the appendix 
demonstrates that there exists a class of Lagrangians for 
which a conservation law may be associated with this type of 
transformation. The equations of motion. conservation laws, 
and symmetries of a system of vortices in an infinite fluid are 
discussed in Sec. III, using the results of Sec. II. Two systems 
of lower symmetry are examined in Sec. IV. 

II. THE PRINCIPLE OF LEAST ACTION, 
SYMMETRY TRANSFORMATIONS, AND 
CONSERVATION LAWS 

The principle ofleast action states that, for a dynamical 
system whose Lagrangian is the function L(qk,(lk.t} 
(k = 1.2 •. ... N), the variation of the action 

i
I, 

J= L(qk,(lk.t)dt 
I, 

(1) 

is zero with respect to infinitesimal variations 8q k in that 
path of integration qk(t) which is the actual trajectory of the 
system between qk(tl ) and qk(t2). with 8qk(t l )=8qk(t2)=O. 
The variation of J depends upon the functional form of L, 
and the principle of least action ultimately requires that the 
trajectory of the system be a solution of the differential equa­
tions given by the Euler-Lagrange equations 

!!.. (~)- ~-O (k= 1.2 .... N) (2) 
dt agk aqk 

regarding qk and gk as independent variables for the process 
of differentiation. 

If the variables are subjected to the general 
transformation 

t' = t'(t) 

q' k=q' k(qm. t) (k.m = 1.2 .... N) 

g' k = dq' k/ dt'. 

(3) 
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the functional form of the Lagrangian (expressed in terms of 
the new variables) must change in order that the numerical 
value of the action be invariant so the new Lagrangian L' is 
defined by 

L'(q' k.i/ k,t')dt' =L(qk,(h,t)dt. (4) 

L' is obtained by substituting the inverse of the transforma­
tion (3) into the RHS of ( 4). Since, in general, L' is of a 
functional form different from L, the differential equations 
of motion in the new variables q' k.iJ' k' and t' will also have a 
form different from the differential equations in the variables 
qk,ih, and t. However, if L' is of the form 

L'(' . , ') aL(' . , ') + d A(' ') q k,q k,t = q k,q k,t -, q k,t 
dt 

(5) 

in which a is a real constant and A is a scalar function, then 
the equations of motion are covariant and the transforma­
tion (3) is said to be a symmetry transformation of the sys­
tem. A symmetry transformation maps a solution of the 
equations of motion into another possible solution. The test 
for an infinitesimal symmetry transformation for which 
a = 1 has been shown by Hill6 to be 

[ 
d aL ( aL . aL)] L -(&)+& - + I Oqk- +Oqk-

a
. 

dt at k aqk q k 

d 
=--8A 

dt 
(6) 

in which 8t=t' -t, 8qk=q'k-qk' and 8ih=q'k-ih are in­
finitesimal quantities and 8A is an infinitesimal function of 
the qk and t. The LHS must be expressible as the total time 
derivative of some infinitesimal function of the coordinates 
and time for the transformation to be a symmetry transfor­
mation. If 8A =0, the Lagrangian is said to be invariant un­
der the transformation. The conservation law associated 
with such a symmetry transformation reads, from Hill, 6 

d [( . oL) aL] - L- Iqk-.- 8t+ I8qk-. +8A =0. 
dt k aqk k oqk 

(7) 

A similar test exists for an infinitesimal symmetry 
transformation which scales L, but the associated conserva­
tion law, if one exists, does not read as simply as (7). The test 
equation results from adding the term - f3L to the LHS of 
( 6), in which f3 = a-I is an infinitesimal real constant. It is 
not clear to the author what the general criteria are for such a 
symmetry transformation to be uniquely associated with a 
conservation law; however, there does exist a class of 
Lagrangians, as shown in the Appendix, for which such an 
association is possible. These Lagrangians are of the form 

(8) 

in which I is an antisymmetric, bilinear function of the qk 
and q k of the form 

I(qk,qJ=(1!2) I IAdJ~n (Ank= -Akn) (9) 
k n 

and F is a function of the q k alone. The scale transformation 

1989 J. Math. Phys., Vol. 19, No.9, September 1978 

( 10) 

is a symmetry transformation with a=e- 2
'1) provided thatF 

is the solution of the differential equation 

(11) 

for some values of A and m = 2 - E/T]. If such is the case, then 
the associated conservation law is the conservation of I since, 
along the trajectory, 

of 
1= -! I qk - = -!(A+mF). (12) 

k oqk 

Fitselfis a conserved quantity sinceL is not an explicit func­
tion of t. The conservation of F and I are independent laws, 
since, althoughFis always conserved, I is conserved only for 
those functions F which are solutions of ( 11 ). 

This brief discourse has relevance to vortex motion 
since the Lagrangian for a system of vortices in an infinite 
fluid, to be introduced in Sec. III, is precisely of the form (8). 

III. THE MOTION OF VORTICES IN AN INFINITE 
FLUID 

The equations of N vortices situated at the position 
Zk(t) (k= 1,2,oo.N) in the complexz plane with strengths "Yk 
(k= 1,2,oo.N) are the N first order, ordinary, nonlinear dif­
ferential equations 

(13) 

in which the dot represents differentiation with respect to 
time and the primed summation symbol means the sum over 
all k excluding k=n. The derivation of these equations of 
motion can be found in any of the classic works l

-
3 along with 

solutions with various initial conditions. Note that the equa­
tions, being of first order in time, require only the initial 
positions as integration constants, the initial velocities being 
determined by the equations of motion and the initial posi­
tions. The presence of boundaries in the fluid would require 
the addition of extra terms to the RHS of ( 13 ). 

It has been recognized for some time that these equa­
tions of motion have the following first integrals (constants) 
of the motion 7 : 

(a) Center of circulation (two independent constants) 

(14a) 

(b) Moment of circulation 

(14b) 

( c) Vortex stream function 

'110=- II''Yn'Ykln~n-zJ (14c) 
n k 

(d) Angular moment of circulation 
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(14d) 

That these are indeed constants of the motion can be verified 
easily by direct substitution of the equations of motion. 

The equations of motion can be put into canonical form 
by employing the vortex stream function \110 and by defining 
the canonical coordinates and momenta 

qk=Zk' Pk=y/J'k 

and writing 

(15 ) 

16) 

The time derivative of any dynamical variable A (q k'P k,t) 
which is not a function of the ilk or Pk may be written, using 
( 16) and the chain rule of differentiation, 

. dA IA ". J . aA 1-= ,'+'0+1-, 
dt at 

(17) 

where 

(18 ) 

This provides an alternate method of proving the invariance 
of Zo, 8 0, and \II 0, but not of 10 , 

lt is possible to view the equations of motion as arising 
from the principle of least action involving the Lagrangian 

-.'7' 1 -. -;-
L(zk,zk,zk,z,J= ---:- I Yk(Z~k-Z~,J 

21 k 

-! I I'y"yJn(z,,-zk)(E:-Z,J 
n k 

(19) 

The equations of motion ( 13) and their complex conjugates 
are given by the Euler-Lagrange equations involving this 
Lagrangian, regardingzk andzk as independent coordinates. 

This Lagrangian is of the form discussed in Sec. II, with 
a slight change in notation, and displays some unusual fea­
tures: the velocities do not appear in quadrature, but in bilin­
ear combination with the coordinates, ensuring that the 
equations of motion are of first order in time; the Lagrangian 
is the sum of two constants of the motion, so its value is 
constant along the trajectory; the Lagrangian cannot be split 
up into a "kinetic energy" part and a "potential energy" 
part, as is the case in the mechanics of point particles. 

Now that the Lagrangian of the vortex system has been 
identified, the machinery of Sec. II may be employed to in­
vestigate the system for its symmetry transformations and 
conservation laws. Since the latter are already know, what is 
of interest is: With which symmetry transformation is each 
conservation law associated? The test for a symmetry trans-
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formation which does not scale L reads 

L d( t>t ) 1 ~ (. ~ - ~" -" . s;:,~,J --- + -----: LY k Z k UZ k -z k UZ k +z k UZ k -ZkuZ 
dt 21 k 

(20) 

and the associated conservation law is 

(21) 

Straightforward calculation provides the following symme­
try transformations and conservation laws of vortex motion: 

(a) Space translation symmetry and conservation of ZOo 
An infinitesimal translation in space of the system, repre­
sented by 

6t=0, 6zk =a, 6zk =0 (a complex and infinites-
imal) (22) 

is a symmetry transformation which does not leave L invar­
iant, but which requires the introduction of the function 

(23) 

The associated conservation law follows from allowing a to 
be any complex number. Specifying a to be either purely real 
or purely imaginary results in the conservation of the imagi­
nary part or real part, respectively, of the center of circula­
tion Zo, from (21). 

(b) Rotational symmetry and conservation of 8 0, An 
infinitesimal rotation of the system, represented by 

6t=0, 6zk=icpZk' 6zk=icpZk (cp real and infinites-
imal) (24) 

is a symmetry transformation which leaves L invariant. The 
associated conservation law in this case, from (20), is the 
conservation of the moment of circulation 8 0, 

(c) Time translation symmetry and conservation of \II o· 

An infinitesimal translation of the system in time, represent­
ed by 

6t=r,6zk =6zk =0 (r real and infinitesimal) (25) 

is a symmetry transformation which leavesL invariant, asso­
ciated with the conservation of vortex stream function \110' 

This exhausts the standard symmetry transformations 
of the system. There remains one conservation law, the con­
servation of 10, and the symmetry transformation t' =e2Tlt, 
z'k=eTlzk, Z'k=e Tlzk, with TJ real. 

(d) Scale transformation symmetry and conservation 
of 10 , Substitution of the canonical equations of motion (16) 
into 10 gives the value of 10 along the trajectory to be 

(26) 
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Following ( 11 ), it is observed that 1[10 is the solution of 

(27) 

for m = 0 and A = - ~n ~'k 'Y n'Y k' so the scale transformation 

t' = e 2"1t 

(28) 

is a symmetry transformation and is the one associated 
with the conservation of 10, whose value is, from (26) and 
(27), 

(29) 

In summary, each of the five conservation laws ofvor­
tex motion in an infinite, two-dimensional, ideal fluid have 
been shown to be uniquely associated with one of the five 
symmetry transformations of the system. One of the symme­
try transformations is a scale transformation. 

IV. VORTEX MOTION OF REDUCED SYMMETRY 

The equations of motion, Lagrangian, symmetry trans­
formations, and conservation laws of a system of vortices dis­
cussed so far have been of a system of vortices in an infinite 
fluid. It is illuminating to examine a couple of systems of 
which the symmetry is reduced due to the presence of 
boundaries. In each case the loss of a symmetry transforma­
tion due to the addition of symmetry-breaking terms in the 
Lagrangian is accompanied by the loss of the associated con­
servation law. 

( I ) Vortex motion in the upper half plane. The addition 
of the term 

L'= L L'Yn'YJn~n-zJ (30) 
n k 

to L results in the altered equations of motion 

(31) 

The presence of the extra terms may be interpreted as each 
vortex at Z k of strength 'Y k having induced an "image" at Zk of 
strength - 'Y k' Such a configuration ensures that the real axis 
is a streamline of the fluid flow at all times, so (32) are the 
equations of motion of a system of N vortices situated in the 
upper half plane. 8 

Examining the Lagrangian L + L' for its symmetry 
transformations reveals: 

(a) An infinitesimal translation in space of the form 
(22) is a symmetry transformation of L + L' only if a = a, 
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that is, translation along the real axis is a symmetry transfor­
mation, translation along the imaginary axis is not. Conse­
quently, only the imaginary part of Zo is conserved. 

(b) An infinitesimal rotation of the form (24) is not a 
symmetry transformation of L + L', and 8 0 is not conserved. 

(c) An infinitesimal translation in time of the form 
(25) is a symmetry transformation of L + L', associated with 
the conservation of '1"0= 'l'o+L', the new vortex stream 
function. 

(d) The function '1"0 is a solution to (27) with m =0 
and A= -~k 'Y~, so the scale transformation (28) is a sym­
metry transformation of L + L' associated with the conser­
vation of 10, whose value along the trajectory is 

(32) 

The constants of the motion in the upper half-plane are 
(Zo-Zo), '1"0 and 10, 

(2) Vortex motion inside the unit circle. The addition 
of the term 

til = L L 'Yn'YJn ll- zhl (33) 
n k 

to L gives the altered equations of motion 

- L 'Yk (n= 1,2, ... ,N) 
k zn-llik 

(34) 

in analogy with the previous case, the images are induced at 
the reciprocal points lIik with opposite strengths -'Yk, and 
the unit circle izI= 1 is a streamline of the fluid flow, so these 
are the equations of motion of a system of vortices inside the 
unit circle. 9 

Investigation of the symmetry transformations of the 
Lagrangian L + L II reveals: 

(a) An infinitesimal translation in space of the form 
(22) is not a symmetry transformation, and Zo is not 
conserved. 

(b) An infinitesimal rotation in space of the form (24) 
is a symmetry transformation, associated with the conserva­
tion of 0 0 , 

(c) An infinitesimal translation in time of the form 
(25) is a symmetry transformation, associated with the con­
servation of'l'lo='I'o+L". 

(d) The new vortex stream function '1'''0 is not a solu­
tion of (27) for any values of m or A, so no scale transforma­
tion [including (28)] is a symmetry transformation, and 10 is 
not conserved. 

The constants of the motion inside the unit circle are 0 0 

and 'I'" o. 
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APPENDIX 

Consider a dynamical system whose Lagrangian is 

L(qk,qk,t)=l(qk,(h) +F(qJ, 
where 

1= 1/2 L LAd/~n 
k n 

(Al) 

(A2) 

with A Ilk = - A nk' and F(q J some scalar functions of the q k 

alone. 10 The equations of motion of the system are 

or, assuming that A has an inverse A-I such that 
20.kr1/;; i =20.0 iA 1n =8k ,I' 

The value of 1 evaluated along the trajectory is then 

aF 
1= -1/2 Lqk-' 

k oqk 

(A3) 

(A4) 

(AS) 

Since L does not involve t explicitly, an infinitesimal time 
translation, represented by 8t = T, 8q k = 8q k = 0, is a symme­
try transformation, according to (6), and the associated 
conservation law is the conservation of F, from (S). 

Under the scale transformation 

the new Langrangian is, from (4) 

L'(q' k,q' k) =e -f L( e··· '/q' k,e«-1/>q' k) 

=e- 271L(q' k,q' k)-e- 271F(q' k) 

+e-fF(e-Tfq'J 

(A6) 

(A7) 

so (A6) is a symmetry transformation with a=e- 21
/ pro­

vided that 

(AS) 
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[Since F has been postulated to be a function of the coordi­
nates alone, the RHS of (AS) can only be the total derivative 
of a function A which cannot be a function of the coordinates 
and, at most, is a linear function of time.1 

Condition (AS) may be expressed in differential form 
by letting f and 1) be infinitesimal and expanding (AS) up to 
first order terms in small quantities, resulting in the condi­
tion that, for (A 7) to be a symmetry transformation, F must 
be a solution to the differential equation 

aF 
Lqk- -mF=iI. 
k oqk 

(A9) 

for some values of the real constants A and m =2-(E/YJ). 
If such is the case, it is clear from (AS) that the value of 1 
along the trajectory is 

1= -!(iI.+mF) (AlO) 

and is a conserved quantity of the motion associated with the 
symmetry transformation. 

IH. Lamb, Hydrodynamics (Cambridge U.P., Cambridge, 1932), Chap. 
VII. 

'L.M. Milne-Thomson, Theoretical Hydrodynamics (MacMillan, New 
York, 1968), Chap. XIX. 
'See, for example, H. ViIlat, Lecons sur la theoriedes tourbillons (Gauthier­
Villars, Paris, 1930), Chap. Ill; N.E. Kochin, l.A. KibeI', and N.V. Roze, 
Theoretical Hydrodynamics (Interscience, New York, 1964), translated 
by B. Boyanovitch, Chap. V; M. Lagally, Handbuch der Physik (Springer 
Verlag, Berlin, 1927), Band Ill; 1.1. Thomson, "Motion of Vortex Rings" 
(Adams Prize Essay, 1883). 

'C.C. Lin, On the Motion of Vortices in Two Dimensions (University of 
Toronto Press, Toronto, 1943). 

'E. Noether, Nachr. Kg\. Ges. Wiss. Gottingen, 171 (1918): there is con­
siderable literature on this subject. A concise treatment of Noether's theo­
rem as applied to classical mechanics has been written by E.A. Desloge 
and R.l. Karch, Am. 1. Phys. 45, 336 (1977). Also see C. Palmieri and B. 
Vitale, Nuovo Cimento A 66,299 ( 1970), E.L. Hill (Ref. 6) and literature 
cited therein. 
'E.l. Hill, Rev. Mod. Phys. 23,253 (1951). 
'The terminology and notation may not be conventional. 
"See Ref. 2, p. 360. 
'See Ref. 2, p. 364. 

JOlt is not necessary that A kn be antisymmetric, although only the antisym­
metric part A[knl would appear in the equations of motion and then the 
antisymmetric part of I would be conserved. The symmetric part of I could 
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Incompatible theories for hydrodynamic fluctuations far from full equilibrium are described and compared, 
The two types of approach are compared with the well established near equilibrium theory of 
hydrodynamic fluctuations. They are also checked for internal consistency and it is shown that one of the 
approaches checks out as inconsistent. The other approach is recommended as a valid approaach. 

I. INTRODUCTION 
The theory of fluctuations for hydrodynamic systems 

which are close to full equilibrium is firmly established. 1-3 

Near full equilibrium, the equations may be linearized, and 
the Onsager-Machlup theory of thermodynamic fluctu­
ations in linear systems may be extended to include the lin­
earized hydrodynamic problem as a special case. 2 Away 
from full equilibrium, the hydrodynamic equations are non­
linear, and it is still not completely settled how the fluctu­
ations should be included. Incompatible theories for the 
nonlinear regime have been presented.4

-
6 In this paper it will 

be shown that one of these approaches4
•
6 is also inconsistent 

internally and must be eliminated while the other approach5 

is almost certainly of the correct structure even if a rigorous 
mathematical derivation is still wanting. 

The study of fluctuations for nonlinear systems has 
been developed in several different contexts, one of which is 
hydrodynamics. Early work by van Kampen? deals with the 
transition from microscopic master equations into macro­
scopic equations in the "macroscopic limit." The resulting 
macroscopic description is in general nonlinear. Kubo et al. 8 

have reviewed this method and have carefully analyzed the 
structure of the resulting equations. A similar result has also 
been achieved in a separate but closely related study offluc­
tuations in homogeneous phase chemical reactions. 
McQuarrie's9 master equation for such reactions has been 
studied in the macroscopic limit where equations for the 
average values10 and for the fluctuations about the averagesll 

have been obtained. Both of these investigations of master 
equation limits lead to equations, generally nonlinear, for 
the average values, and equations for the fluctuations 
around the average values. Therefore, the result is that one 
gets two sets of equations. One set is for the time evolution of 
the average values and is often called the deterministic set of 
equations. The other set is for the fluctuations around the 
deterministic values and can always be rendered as a nonsta­
tionary, Gaussian, Markov process, which is in fact a linear 
system of equation. In chemical reactions, the deterministic 
equations are the familiar mass action equations. The 
Gaussian nature of the fluctuation equations reflects the 
similarity of these results with the central limit theorem of 
probability theory. 12 Another context for the theory offluc­
tuations for nonlinear systems is the It<rStratonovich calcu­
lus13 for stochastic differential equations. In this approach, 
fluctuations are simply inserted into the nonlinear macro-

scopic equations and the theorems of Ito and Stratonovich 
are then applied. For example, this approach has been used 
to describe fluctuations for the Benard instability. 14 Other 
investigators4

•
6 have used similar approaches without any 

parallel to the It<rStratonovich calculus being drawn. Mori6 

has in fact presented a derivation of his equations in this 
form. Keizer5 has built a theory of hydrodynamic fluctu­
ations, structured in the same way as the equations which 
arise in the master equation approach. Consequently, he gets 
nonlinear hydrodynamic equations for the average values, 
and a nonstationary, Gaussian, Markov process for the fluc­
tuations around the averages. The fluctuations end up obey­
ing linear equations. 

Comparison with equilibrium and near equilibrium 
fluctuations l

-
3 will be made here. It will be shown that only 

Keizer's approach to the hydrodynamics problem is consis­
tent, internally, as well as with near equilibrium fluctu­
ations. The presentation will proceed by first presenting the 
hydrodynamic equations in their nonlinear form. Following 
this, both types of fluctuation theory will be exhibited, and a 
comparison with the near equilibrium theory will be shown. 
Finally, the inconsistency of inserting the fluctuations di­
rectly into the nonlinear equations will be proved. 

II. NONLINEAR HYDRODYNAMICS 
The Navier-Stokes hydrodynamic equations2 for the 

space-time variation of the mass density, p (y,t) , the velocity 
field uCr,t), and energy per gram, dr,t), are 

a -+ 
at'P+V-( pu )=0, (1) 

(2) 

( 3 ) 

in which repeated indices imply summations, X1=X, X2=Y, 

and x 3 = z, and D a(3 is defined by 

D = ..!. (au a au p ) 
ap- 2 a + a . 

Xp Xa 
(4) 

P ap(Y,t) is the pressure tensor defined by 

Pap,t) P(1-,t)Dap-27J(Dap-..!.Dy!Jap)-SDy!Jalfl (5) 
3 
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in which p(r,t) is the pressure field, rt is the shear viscosity, 
and g is the bulk viscosity. q a (r,t) is the heat flux vector field 
and is defined by 

a 
qa(J,t) = -K- T(J,t), (6) 

aXa 

in which T(J,t) is the temperature field and K is the heat 
conductivity. 

Counting the vector components of u as three separate 
quantities, Eqs. (1), (2), and (3) characterize the 
space-time behavior of five quantities in terms of seven 
quantities which include the two additional quantities,p and 
T. Two of these seven quantities may be eliminated through 
application of two, local equilibrium, thermodynamic equa­
tions of state: 

p(J,t) =p(p(J,t), T(J,t» 

and (7) 

E(r,t) = E(P(r,t),T(y,t». 

The first of these equations of state may be used to eliminate 
p from (2) and (3) in favor of p and T. The second equation 
of state may be used in conjunction with the first law of 
thermodynamics, 

dE=Tds+ Ldp, 
p2 

( 8 ) 

where s is the entropy per gram, and a Maxwell relation 

( as) 1 (ap ) 
ap T = - p2 aT p' 

(9) 

To obtain 

p2(~; t=p- ~;~ t (10) 

which permits elimination of E in favor of p and T, Eq. (3) 
can be written 

p(:t +U'~)E 
=p(~) (~+u.~\~+p(~) (~+U'~)T 

ap T at r aT p at 

a 
= - - qa- PapDa{3' (11) 

aXa 
With ( 1 ) and the definition of the heat capacity per gram a 
constant density, 

Cp=(~) , 
ap p 

(12) 

Eq. (11) becomes 

pCp(:t T+(U'~)T) 

=p(~) p~'U-~qa-PapDa{3' 
ap TaXa 

(13 ) 

From ( 10 ) it follows that 

( 
aE ) -> -> (ap ) -> ... p - p 'l'u =p 'l·u- T - 'l·u. 
ap T aT p 

( 14) 
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From the equation of state (7), (ap/anp is determinable 
and will be replaced by the symbol B. From (4) and (5) we 
also get 

PapDa{3=p~·u-2rtDapDa{3-(g- ~ rt)(Dyy)2. (15) 

Combining (14) and (15) with (13) yields 

PCp(:t T+( U'~)T) 

= - aa q a -BT~.u +2rtD a{3D a{3+ (g-+ 
Xu. 

rt) (D yy)2. 

(16) 

Therefore, we will take ( 1 ), (2), and (16) as our system of 
equations for five quantities, p, D, and T, and understand that 
thep inPa{3in Eq. (2) has been eliminated in terms ofp and T 
by the equation of state (7). This implies the replacement 

a a a 
- -p=-A -p-B -T, (17) 

aXa aXa aXa 

where A and B are defined by 

A (ap
) 

ap T 
and B =(a

p
) . 

aT p 

(18) 

III. HYDRODYNAMIC FLUCTUATIONS 

In their book, Fluid Mechanics, Landau and Lifshitz!.l' 
have argued that in addition to the deterministic space-time 
evolution of the hydrodynamic quantities, there are also 
fluctuations in these same quantities. They conclude that the 
pressure tensor should be augmented by a fluctuating contri­
bution Sarll,t) which is Gaussian and has first and second 
moments 

and (19) 

in which kB is Boltzmann's constant, Tis the temperature 
and ,;ja{3f.J.v is the correlation tetratic 

,;ja{3!,-v=rt (oa!,-o{3v+ oafi{3!'-) + (g -+rt )OaJif.J.v' (20) 

in which rt and g are the viscosity coefficients in (5). They 
also find that the heat flux vector should also be augmented 
by a fluctuating contribution ga(r,!) which is Gaussian and 
has first and second moments 

< ga(r,t »=0 

and (21) 
<ia(y,t)i{3(y',t'»=2K kBTo( r -r')o(t-t') {jaB' 

in which K is the heat conductivity in ( 6). These expressions 
were subsequently rigorously established on the basis of an 
extension2 of the Onsager-Machlup theory for near equilib­
rium fluctuations. However, this connection is only valid for 
the linearized hydrodynamic equations. Moreover, Landau 
and Lifshitz confine all of their example to the linearized 
cases. 
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For later comparison with the nonlinear expressions, 
the linearized hydrodynamic fluctuation equations are given 
below. The linearization is with respect to the equilibrium 
valuesofp,u, and Twhich are respectively Peg,D, and TCg and 
the derivations around these equilibrioum values are denot­
ed by 11p, 11u, and 11 T: 
a --. -11p+p eq'V·11 u =0, e 22 ) 
at 

a a a 
Peq-11 U a = -A eq--11p-B eq--11 T 

at aXa ax" 

+ ~ [2",11D a/3( t - ~'" )11 D )'Y b a/3] 
axp J 

a -
+ a- Sa/3' 

X/3 

K
---+ 2A T a_ + 'V~ + --ga' 

aXa 

(23 ) 

(24 ) 

where 11 D a/3 = {( a11u ,Jax /3 )+ (a11u /3 lax (y )] and A eq 
(a pi ap )eq' B eq (a plaT) eq' and 

C p eq ( ada T) p eq' These equations, or their equivalent, 
have been derived by various methods by several authors. 2).0 

Several authors···· l4 have suggested that Sa/3 and ga 
should accompany P a/3 and q u/3 everywhere P a/3 and q a 

occur in the nonlinear hydrodynamic equations ( 1 ), (2), 

and e 16). The effect with regard to the q (l and .ita terms is of 
no special consequence because these terms appear only lin­
early even in the nonlinear hydrodynamic equation ( 16). 
However, the effect with regard to Sa/3 is crucial as will 
emerge in the sequel. The resulting equations are 

a ---+ 

-p+'V.(pu)=o, 
at 

(25) 

p(:t Ua+(U'V)U a)=- a~/3 P a/3+ a~(J Sari' 
(26) 

(
a -.-) a a_ pC -T+(u·")T =---q +--g. 

p at v a a a " Xa Xu 

-BTV·u +2",D a(JD afJ 

+(t -f"')( D )'1')' 

(27) 

The unusual new term is the last term in (25 ), S-a/3D a/3' 

Using a terminology introduced earlier by the author" 
in another context, the fluctuations in Eqs. ( 22 )-( 24 ) are 
"additive" while in ( 25 )-( 27 ) they are both "additive" 
and, in the instance of Sa/3D u/3' also "multiplicative." This 
"multiplicative" fluctuation will be shown to lead to serious 
difficulties, in the next section of this paper. It will also be 
seen that such a term is absent from the alternative formula-
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tion of fluctuations for nonlinear hydrodynamics which is 
presented in the following paragraphs. 

The structure of Keizer's theory parallels the structure 
of results obtained in the master equation treatments of non­
linear fluctuations discussed in the introduction. To be con­
crete, suppose that the time evolution of a single quantity, n, 
is governed by a master equation of the form 

!!...- P(n,!) ~ J W(n,n')P(n' ,t )dn' 
at 

-J W(n',n)P(n,t) dn', 

(28) 

where P (n ,t ) is the probability distribution for the values of n 
at time t. Denote the average value of n by n(t) and the fluctu­
ation around n by 11n. If W(n,n') satisfies certain conditions 
which will not be entered into here, 7.8.'7 then the result is that 

(29) 

and 

!!...- P(11n,t)= - ~(iC(n)11nP(11n,t» 
at a11n 

1 a2 

+ - --(K 2(n)P (11 n,t », ( 30) 
2 a11n 2 

where K,( n) f dn'( n' -n )W( n',n), K,( n) 
-f dn'( n' -n )2X W( n',n), K't( n)=( dldn)K,( n), and 
P( 11n,t), as distinct from P( n,t), is the probability distribu­
tion for the fluctuations, 11n, around the average n. Equation 
( 30) describes a nonstationary, Gaussian, Markov process 
which acquires its nonstationarity from the implicitly time 
dependent coefficients: K 'J ( ii) and K 2( ii) which acquire 
theirs from ii( t ), the solution to ( 29 ). Generally, ( 29 ) is 
highly nonlinear because K,( ii) is nonlinear, but it is a func­
tional of ii( t ) alone. It is always possible" to render ( 30) in 
the equivalent Lagevin-like form 

( 31) 

where <!( 0)=0, <j(t)j'(s»=K 2(n(t »b(t -s), and!et) is 
Gaussian. Equation (31) is clearly linear in 11n, although 
non stationary and even though n satisfies a nonlinear 
equation. 

In order to apply this theory to hydrodynamics, Keizer' 
has had to introduce a master equation basis from which to 
extract the results, especially the fluctuating force correla­
tion K2( ii) above. This he achieved by considering the hy­
drodynamic fluid to be comprised of myriads of tiny cells, 
and by analyzing a variety of "elementary processes." I do­
ing so, he obtained a unique set of results as are exhibited 
below. Clearly, two sets of equations will be required. One 
set is for the average values of the hydrodynamic quantities, 
p, u, and T, which will be denoted by p, Ii, and f. The other 
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set will be for the fluctuations of these quantities around the 
averages and will be given in terms Llp, Llit, and £1 T. 

In precise analogy with the results obtained for the mass 
action laws 'o based upon the Mcquarrie master equation, 
the equations for the average values are exactly the usual 
nonlinear hydrodynamic equations: 

a _ -+ _:; 

-P+V·( pu )=0, 
at 

-( a - ( :; ---> ) -) A a - B a -p -U a + U'V U a =- --p- --T 
at aXa aXa 

pC p (:t t + ( a. V ) t ) 

a -
+21]-- D a[3 

aX[3 
a -

+(5-+1]) -a-D),)" 
Xa 

=KV2 t -B ty.a +21]D a[3D a[3 
+( 5 -+1])( D yy )'. 

(32 ) 

(33 ) 

(34 ) 

In ( 31 ) it is seen that the fluctuations satisfy a rate equation 
in which the nonstationary coefficient, K'I(ii,( t », is derived 
from the nonlinear rate equation ( 29 ) by one differenti­
ation. This amounts to a linearization around the average 
behavior! Because linearization and differentiation with re­
spect to space-time are commutable, the equations are 

a -~ ~- ---. ---+ 

- Llp+( it·v )Llp+LlpV·a +pV·Ll a +( £1 a·v )p=o, 
at 

P~Ll u a +p(Ll a'V)ii a +p( a'V)Ll U a 
at 

+LlP~ ii a +Llp( a'V)ii a 
at 

( 35 ) 

a a 
=-A --Llp-B --LlT+21] 

ax a ax a 

a 
--LlD a[3 
aXa 

(36 ) 

a - -+ -

pC p at £1 T + pC p ( a . v ) T 

-+- a- --+-

+pC p( £1 it'V)T + LlpC f' arT + LlpCp( a'V)T 

=KV2LlT -BLlT V·a-B tV'Ll a +41]D a/3Ll D a/3 

2 a - --+( 5 --1] )2( D yy )( LlD yy ) + --g a+ S a/3D a/3' 
J aXa 

( 37 ) 

In ( 33 ) and ( 34 ), and in ( 36 ) and ( 37 ), as in ( 23 ) and 
( 24 ) D a/3 and LlD a/3 are defined in the natural manner: D a/3 

~(a ii a/ax [3 +a ii [3/ax a ) and LlD a[3 ~(aLlu a/ax /:l 
+ aLl u [3/ax a ). The important observations regarding 
( 35 )-( 37 ) are that they are linear in Llp, Lla and £1 T, with 

1996 J. Math. Phys., Vol. 19, No.9, September 1978 

non stationary coefficients depending uponp, a, and twhich 
are determined by ( 32 )-( 34 ). Especially notice that the 
S a[3D a/:l term in ( 27 ) is S a/:lD a[3 in ( 37 ) which means it is 
an "additive" fluctuation in the Llp, £1 a, and £1 T equations, 
which has a nonstationary mo'!ulator, D a[3' determined by 
( 32 )-( 34 ). The fluctuations S a/3 and g a are identical with 
those given by ( 19 )-( 21 ). However in the near equilibri­
um, linearized theory in which ( 19 )-( 21 ) were originally 
derived, the temperature T in the correlations in ( 19 )-( 21 ) 
is the equilibrium temperature Teq. In the far rom equilibri­
um, nonlinear regime, the temperature Tin ( 19 )-( 21 ) is 
instead T( r,l ). The possibility that K, 77, and 5 acquire rand 
t dependence far from equilibrium may also be considered. \ 

IV. COMPARISON WITH EQUILIBRIUM 
FLUCTUATIONS 

The comparisons between ( 25 )-( 27 ) and ( 22 )-( 24 ) 
and between ( 32 )-( 37) and ( 22 )-( 24) will proceed by 
making the latter comparison first since it is more easily 
achieved. Near equilibrium, the average values, p, a and t 
become the equilibrium values, Peg' 0, Teg, which are uni­
form in space-time so that all space-time derivatives of them 
vanish. If these values and their derivatives are put into 
( 32 )-( 34 ), it is found that each equation reduces to simply 
0=0. When this substitution is made in ( 35 )-( 37 ), all that 
remains is precisely ( 22 )-( 24 ). In particular, S-a[3D a/:l =0 
near equilibrium because D a[3 =0 there. Consequently, 
Keizer's theory goes over into the well established near equi­
librium theory very nicely. 

The situation is much more problematical with regard 
to comparing (25 l-( 27) with (22 )-( 24). Near equilibrium, 
nonlinear terms should be linearized around the equilibrium 
values. The result is 

a -+ ~ 
-LlP+PeqV·Ll U =0, 
at 

a a a 
Peg -at £1 u a = -A eq --Llp-B eq --£1 T 

aXa aXa 

+ ~ [ 21]£1 D a/3 
aXf! 

( 38 ) 

2 ] a -+( 5 --1])£1 D yy~ afJ + - S afJ' (39) 
3 ax f1 

(40 ) 

This is almost total agreement with ( 22 )-( 24 ) except 
for the S a[3£1 D a[3 term which is kept because it is linear in 
the variable £1 a. It may be suggested that it must be small 
since it is bilinear in S a[3 and £1 D a[3' both of which are 
supposedly small, so that it is negligible compared with other 
terms in the equation. However, as will be shown subse­
quently, its "multiplicative" structure leads to a "large" ef­
fect. In fact, generally, if a term is really negligibly small, 
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then ifit is kept along in the analysis it should make a negligi­
bly small effect, so no harm accrues by keeping it. 

In Mori's analysis6 this term is not seen in his near equi­
librium results which essentially agree with (22 )-( 24). 
However, he carries out two separate derivations: one for 
near equilibrium and one for far from equilibrium. He does 
not show that his results for far from equilibrium go over into 
his results for near equilibrium in a natural manner such as 
exhibited above. Putterman4

•
19 on the other hand definitely 

keeps the S a~D a/3 term in (40). In his recent provacative 
analysis 19 of lIfnoise in voltage fluctuations, it is precisely 
this term which provides the lIfspectrum. 

In order to demonstrate the difficulty associated with 
theS a~D a/3 term, (38 )-( 40) are rewritten in a form which 
normalizes the dimensionality of all the variables. 

Define 

a (r,t )=r ~ 112 ..1p( r,t), (41) 

aaU,t) (PeqIA)lIua U,t), a=2,3,4, (42) 

(43) 

and define the three "matrices," A ij ( r ,r '), S ij ( r l '), and 
Sf ijU,r') by 

( 

0 A laU,r') 
A ijUl') A al(orl') 0 

A SaU -r') 

Because a = 2,3,4, this is really a 5 X 5 matrix 

M- ( ... "") -S- a i:('" "") Sa r,r = aJ.L --u r-r , 
aXfL 

a=2,3,4. 

In this notation, Eqs. (22)-(24) become 

~a ;(r,t)+JA ijUl')a if,t) d 3f at 

1997 J. Math. Phys., Vol. 19, No.9, September 1978 

(45) 

(46) 

(47) 

where 

and 

Fs(r,t )= --g a( r,t ). ... _( 1 )112 a _ ... 
PeqTeqAC ax a 

Equation (47) is simultaneously an "additive" stochastic 
process and a "multiplicative" stochastic process. 16 

Let G ijUl') ==A ijU,r') +S ijUl') so that (47) 
may be rendered in the "short-hand" form 

.!!...- it(t ) -tG it(t ) =M (t )it(t ) +F (t ) 
dt 

(48) 

wherein it(t) is considered a vector labelled by i and and 
"continuous index" r, and G denotes a matrix labelled by i 
and} as well as by rand f. Similarily, we may interpret M(t) 
and F (t ) as stochastic objects with both discrete indices and 
continuous indices. "Summation" over the rvariables is 
integration. 

The solution to ( 48 ) can be found exactly. Defineb (t) 
by 

it(t) exp( -Gt)b (t). (49) 

Therefore, 
d ... 
-b(t) 
dt 

=exp(Gt )M(t) exp( -Gt)b (t )+exp(Gt )F(t). 
(50) 

The solution to this is 

b (t)= '[ exp[f exp( Gs) M (s) exp( -Gs) ds ]b (0) 

+ f '[ exp[f exp(Gs)M(s) eXP(-GS)dS] 

~ 
Xexp(Gt')F(t') dt', (51) 

in which T exp( ... ) denotes the "time ordered" exponential. - ... 
Suppose that we now look at <b (t». From (51), this 

involves two expressions, one of which is 

('[ exp[f exp(Gs)M(s)exp( -Gs)ds ])b(O) 

=exp{l f ds f ds' exp( Gs) 

<M(s) exp[G (s' -s )]M (s'» 

X exp( -Gs')}b(O). (52) 

The equality follows because the M has a delta function cor­
relation which, for a Gaussian M, guarantees that the second 
cumu1ant is exact,2° Now notice that 

<M( s) exp[G( s' -s )]M( s' »=<M( s )M( s'» (53) 
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because the delta function b( s -s' ), implicit in this average, 
reduces exp[G( s' -s)] to the identity matrix. Finally, from 
the definition of M it is clearly so that the product 
M( s )M( s' ) is identically zero; i.e., Mis nilpotentl There­
fore, this part of ( 51 ) is just b( 0 ): 

(r.. exp[1' exp(Gs)M(s)exp( -GS)dS]) 1, 

The other expression in <be t » is 

(1' dt'! explf ds exp(Gs)M(s)exp( -GS)} 
=-. 

~< exp( G t' ) F( t') ). 

oJ 

(54 ) 

( 55 ) 

From their definitions, it is clear that M and Fare correlated 
since Fa contains ( a/ a x (3 )Sa(3' All odd order products in 
the expansion of the exponential will possibly give n2!lzero 

results for the average when they are multiplied by F, but 
even order terms in t~e exponential expansion will give zero 

when multiplied by F and averaged as a result of Gaussian­
ness and zero-valued averages as in ( 19 )-( 21 ): 

(1' dt'Iexp[f dseGSM(S)e-Gs]eGt'l(t')) 

= (1' dt' e G t' J( t') ) 

+(1' dt' f dseGSM(s)e-GSeGt-J(t) ) 

+ ( r dt' (t ds IS ds' 
Jo )" t' 

,--J 

e G S M ( s )e G ( s' - s lM ( s" )e -- G s" e G t' F( t') ) 

+ higher order terms. ( 56) 

Clearly, the first and third terms of the right-hand side van­
ish because they are odd order in TS. Any odd order, higher 
order terms will also vanish. Even the fourth term vanishes 
because the time delta correlation for TS and the time or­
dered integrals lead to the identities 

([t dt' It ds (S ds' (s'ds"eGSM(s) 
~ 0 l' Jt' Jt' 

= It dt' ft ds (' ds' r' ds" e G S <M (s ) 
(1 _1 Jt Jt 

(57) 

without any "overlap" correlations. We get zero as with the 
first part of ( 51 ), from the nilpotence ofM. All higher even 
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order forms will also vanish. Only the second term on the 
right-hand side of ( 56) is nonvanishing. It is equivalent to 

f dt' f ds eGs<M(s)J;(t'». (58 ) 

We evaluate this as follows: 

<M( s )F( t' » 

=f d1r' (Sa/lU,s) ~bU-r') 
ax /l 

1 a - ') x -,-s a/3( r,t ) 
(Peq4 )112 a x /3 

2kBT 

(Peq4 )1/2 

xfd1r' (_a_ bu--r, »)(~bU-1'») 
aX,L aX/3 

Therefore, 

=(f'dt'leGt') 2kBT (~1]+5) 
Jo 2 (Peq4 )112 ) 

X fdJr' ( a~/l b(1-1'») 

X ( ~ b( r- r' ») = 00 • 

aXil 
(59 ) 

This singularity results from the double Dirac delta func­
tions in the correlation function. 

At this stage, the view that a theory with a structure of 
the type which arises from master equation treatments is 
both natural and necessary for a proper formulation of hy­
drodynamic fluctuations for the nonlinear regime seems jus­
tified. Keizer's' theory is such a theory. It remains to be seen 
if predictions for scattering measurements lead to quantita­
tive agreement with actual measurements in the nonlinear 
regime. 
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A time-symmetric tachyon universe 
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The momentum flux (p) and contrast momentum flux (K = op/p) are investigated in an open time­
symmetric model of the tachyon universe containing different types of tachyon fluid, when 1){1)". It has 
also been shown that pressure turns negative when 1){1)o. In the light of this approximation, ho\\ the 
physical situation changes in the model has been discussed. The tetrad technique has been med as a 
mathematical tool. 

1. INTRODUCTION 
A.Background 

Velocity consideration has played a very important role 
in relativistic physics, and it is this consideration which has 
given birth to a new class of particles, called tachyons, mov­
ing faster than light. Sometime ago, on the basis of the theory 
of relativity proposed by Einstein in 1905, I there was the 
general belief that this class of particles cannot exist. But 
nowadays against this old view the existence of such parti­
cles is widely believed on theoretical grounds due to concert­
ed efforts of some scientists as Bilaniuk, Deshpande, and 
Sudarshan,2 Feinberg1, Schmidt; Terietskii,S Tanaka, 6 

Recami and Mignani,7 Antippa and Everett,8 and Antippa. 9 

Hence, in the present paper we consider tachyons as real 
particles despite of the fact that they have not been experi­
mentally detected up till now. Though experimental detec­
tion of the tachyons has not come to a reality, still, while 
believing in their existence, it is very natural to think about 
their production. Therefore, here we will assume that at the 
epoch of big bang, along with the elementary particles of the 
other matter, tachyons were produced, and they, being 
superluminal and gravitationally repelled by the 
bradyons7-10 (particles moving slower than light), soon 
rushed out of the region ofbradyons, forming another block 
of the universe called tachyon universe or Meta-Universe. 
Many scientists, such as Foster and Ray," Gott,12 and the 
authors, 11.1' have proposed models for an open model consis­
tent with the quantum mechanical effects related to the pre­
vention of singularities proposed by Gott. Here, to avoid 
formation of casual loops, we consider the motion of 
tachyons unidirectional in space as the motion ofbradyons is 
taken unidirectional in time. For our investigations we have 
considered our model containing tachyon fluid because a 
realistic model should include pressure also. 

In subsection IB we have given the tetrad technique to 
solve sophisticated problems of gravitational field equations 
in this paper. In Sec. 2 we have got the expressions for vari­
ation of momentum flux in the tachyon universe containing 
tachyon fluid. In the next section, contrast momentum flux 
(8p/ p ) of the model is investigated. The last section includes 
discussion of the results obtained in Secs. 2 and 3. 

B. Notation 
In this paper the space-time is represented as a four­

dimensional Riemannian space with metric tensor gij of sig­
nature ( +, +, +, -). Covariant differentiation is indicat­
ed by a semicolon (;) and covariant differentiation along (8, 
¢, a) = const by a prime over the variable. Round brackets 
around the indices indicate symmetrization and square 
brackets antisymmetrization. Throughout the paper the ve­
locity oflight and the quantity 8rrG/C' have been taken as 
units. 

Rab-~gabR+Agab=(p+p)ua ub-pgab' (1.1) 

where p=(y-l)p. Here ua are spacelike 4-velocities for the 
tachyon fluid so that ua U a = + 1. The acceleration of the 
fluid is 

Ui Ui;jti, where the dot denotes a/at. 

The velocity gradient may be further split up as 

uiJ = Wij+aij+~eHij-ui up 

where e=U\i is the expansion scalar. 

aij=uU;j)+uUuj)-l/3eHij 

is the trace-free shear tensor. 

Wij=U[i;jj+U[ijuJ is the vorticity tensor. 

( 1.2) 

Here Hij is a tensor which projects a quantity from 1] =consl 
to (8, ¢, a) = const defined by 

( 1.3 ) 

i.e., 

Heregijand U i have got their usual meaning. The Ricci rota­
tion coefficients are defined by 

so that 
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! ea I are four orthonormal vectors hereafter called tetrads of 
vectors, which are in general not always remaining the same. 
The Lie derivative of eb with respect ea is 

(ea,eb)=rab ee' rab=r[ab]' 

It follows that Yab and reab are linearly dependent: 

Yab = reab - reba 

Now the Einstein field equations ( 1.1) can be written down 
in the tetrad form as 

Rdb = il dr::b - a cf'<'db - recg I?d~~gd 

=--(A-~-]L)H -(A+~_L)u Ud' 
2 21 bd 2 2 b 

( 1.4 ) 

o[dyfcbj +71dc y{jg=O is the Jacobi identity. (1.5) 

The tetrads are so chosen that the spacelike vector e1 is the 
tachyon fluid vector U 1 so that 

ua=8f, ua=8~. 

In a cosmological model filled with tachyonic perfect fluid, 
the lines of flow are spacelike geodesics and the contracted 
Bianchi identities are 

p' + (p+p)e=o, where e=B2+B3+B.. (1.6) 

Suppose the perturbation of the model results in the forma­
tion of momentum fluxp+8p, so that the ratio of increase in 
momentum flux to the model is K =8p:p and the relative 
expansion in this region is -8e. Perturbation of (1.6) gives 

a](8p) +e8(p+p)+(p+p)8e=0. ( 1.7) 

Therefore, substituting p = (y - 1 )p, we have 

il, (8P ) = il 1(8p) _ 8p p'=-y.8e. (1.8) 
p p p' 

This gives the ratio of growth of K with respect to 'Y/ in the 
condensation. Here we have considered the motion along the 
line (61, ¢, a) =const and have characterized Xi (i= 1,2,3,4) 
by J/!, 61, ,p, and a respectively. 

2. MOMENTUM FLUX OF THE TACHYON 
UNIVERSE 

Let us consider the model proposed by Gott, 

where 

x = 'Y/ sinB cos¢ cosha, 

Y='Y/ sinB sin¢ cosha, 

Z='Y/ cosB cosha, 
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(2.1 ) 

t='Y/ sinha, 

as the background model. 

Now the metric C2.1) can be re-written as 

ds, =dif!2 + 'Y/'[cosh'aCdB'+sin'Bd¢') -da'], 

where 

when n '>'Y/o, 
when n <'Y/o. 

(2.2) 

(2.3 ) 

Also in the case of tachyons we can take t=O which implies 
a = 0 showing that a is the measure of time t in this model. 

Further, the non vanishing tetrad components of the 
fundamental tensor g ij in the line element (2.2) are given by 

(e1])a=o= 1, (e2')a=O=(1I'Y/), (e/)a=o=(lI'Y/) sinB 

and 

The components of Y'bc are given as 

il 
[8]]a=O= -y\, = - a;;; (loge]]) 

and other components of Y'bc vanish. 

The tetrad field equations ( 1.4) are given as 

DB,+B,CB,+BJ +(4)= -A + ~ - L, 
2 2 

DB4 +8.(B2+BJ +B4)= -A + ~ - L, 
2 2 

where D- a/aJ/!. Further substituting from (2.4), 
61,=613 =614 =610 (say) andA=Oin (2.5), we have 

DBo+3B.o2= ~ - J!.... 
2 2' 
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Case I: 11>110 

and 

The tetrad field equations (2.6) yield 

p=31¢2=311]2 (2.7) 

(2.8) 

The results (2.7) and (2.8) together imply that inward 
pressure increases with the expansion of the open universe 
containing perfect fluid. Also the result (2.8), showing the 
negative pressure in the model considered, is consistent with 
its openness. 

Case II: 11<110 

In this case the model consists of different types of per­
fect fluids for which pressure is not negative. 

1. Model containing tachyon dust or tachyonic 
neutrinos 

Dust is characterized as a pressureless fluid and also 
neutrinos are collisionless particles. According to kinetic 
theory of gases, pressure is created due to collision, hence the 
neutrinos also characterized as pressureless perfect fluid. 
Hence p = 0 for tachyon dust or tachyonic neutrinos. Thus in 
this case field equations (2.6) are 

D80+ 388= p12, 

3D80+388= -p/2, 

which are easily integrable yielding 

80 =2/3¢ 

and 

p=4/3¢2= 81Tpo( 1]011] )3. 

(2.9 ) 

(2.10) 

(2.11 ) 

2. Model containing tachyonic radiation (collision­
dominated) 

In this case of collision-dominated radiation, p =pI3. 
Hence the field equations (2.6) are 

D80+388= p13, 

3D80+ 388= -p, 

which gives on integration 

80 = lI2¢ 

and 

(2.12 ) 

(2.13 ) 

(2.14 ) 

3. Mode containing tachyonic fluid in superdense 
state 

The superdense state of fluid is characterized by the 
equation of state p=p. Hence in this case field equations 
(2.6) are rewritten as 

D80+386=0, 3D8o+386= -2p; 

on solving these equations we have 
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(2.15 ) 

( 2.16) 

and 

(2.17 ) 

Thus from the above results we find that momentum 
flux of the model decreases as 1]-3 with increasing 1] which 
measures the proper length in the case of tachyons and also 
the space-time is singular at 1] = O. But at a particular value 
of 1], except 1] = 0, the momentum flux in the case of 
pressureless fluid is largest, and, in the case of superdense 
state, it is the smallest, showing that the tachyonic fluid also 
does not have a tendency to remain in the superdense state 
like bradyons in bradyon cosmology. 

3. PERTURBATION OF THE MOMENTUM FLUX 
INTHEMODEL 

The spacelike counterpart of Raychaudhuri's equation 
which gives the field equations in the simplest form is written 
as 

@' + 1/3E)2+2(~- W)+!(p-3p) +A=O. (3.1) 

For the sake of simplicity we take W = 0, u, Wand van-
ishing. Now the field equation (3.1) is reduced to 

@'+lI3@2+!(p-3p)=0. (3.2) 

After a slight perturbation, Eq. (3.2) becomes 

D2@+28oD@+!(Dp-3Dp)=0. (3.3) 

Now with the help of( 1.8) andp=(y-1)p, (3.3) is written 
as 

D2K + 280DK -!yp(4-3y)K =0 

where K =t>p/p. 

Now we will discuss different cases. 

Case I: 11>110 

(3.4 ) 

With the help of (2.4), (2.7), (2.8), and p= (y-1 )p, 
we have the perturbed field equation (3.4) as 

Solving this equation we have 

K=C1¢+C2¢-2 

= CI1]+ C21]-2 

The two parts of the solution (3.6) are 

K 1 =Cl1] 

and 

where C1 and C2 are integration constants. 

(3.5 ) 

(3.6 ) 

(3.7) 

(3.8 ) 

Case II: 11>110 . 
1. Model containing tachyon dust or tachyontc 
neutrinos 

As discussed above in Sec. 2 we have p = 0 in this case. 
Hence the perturbed field equation is \'/ritten as 

(3.9 ) 
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which on integration gives 

K=AdtflJ+Bd¢-l 

=A'D1/ + B' d1/-J/2, (3.10 ) 

whereA'd=Ad/(61TPo1/~)1I3 andB'd=Bj61TPo1/b)1/2 are con­
stants. Ad and Bd are integration constants. Thus the two 
parts of this solution are 

K 1=A'd1/ (3.1 I) 

and 

(3.12 ) 

2. Model containing tachyonic radiation (collision­
dominated) 

Substituting p =p/3 in Eq. (3.4), we have 

D2K + (1/¢)DK =0, 

which yields 

K=A)og¢+Br 

=A'r 10g1/+B',., 

(3.13 ) 

(3.14) 

whereA'r=3/2Ar and B'r=Br-!log(61Tpo1/b) are con­
stants. HereA r and Br are integration constant. 

3. Model containing tachyonic fluid in superdense 
state 

Substitutingp=p in Eq. (3.4), we have 

D2K + (2/3¢)DK + (2/3tf)K = 0, (3.15 ) 

which gives on integration 

K=¢1/6Ascos[ ('V23/6) log ¢+BJ 

=1/1I4A'scos[ ey 23/6) 10g1/+B'.], (3.16 ) 

where A's=A/(61Tpo1/b)11l2 and B's=B.(23!8)112 
X log( 6ppo1/b) are constants and As and Bs are integration 
constants. 

4. DISCUSSION 

From the results obtained in Secs. 2 and 3, we find that 
the approximation in two cases when 1/ » 1/0 and when 
1/ < 1/0 leads to a very interesting situation. In the former 
case results (2.7) and (2.8) imply that the model contains a 
fluid for which pressure is negative, meaning thereby that 
pressure increases with increasing spacelike quantity 1/, i.e., 
pressure increases with expansion of the model. This shows 
that pressure is checking the very cause of its increase. But, 
in this case, the model becomes asymptotically flat; hence 
this case does not arouse our interest. In the latter case, the 
situation of pressure of being negative does not arise and 
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some important results are obtained. Results (2.11), (2.14), 
and (2.17) show that momentum flux decreases as 1/-3 with 
increasing 1/. Also we find that p is constant at 1/=1/0 and 
space-time is singular at 1/=0 in both cases. Thus from 
above it is implied that the entire physical situation of the 
model changes on crossing the hypersurface 1/ = 1/0' 

In Sec. 3 on making perturbation of the model also the 
above approximation yields very important results which 
show that condensation of tachyons grows as 1/ increases. 
Equations 0.8), 0.12) are trivial because they do not sup­
port condensation of tachyons in the model, which goes 
against the fact that a tachyon attracts tacyhons. 14 From Eq. 
(3.7) and (3.11), it is learned that the condensation in the 
model when 1/ » 1/0 grows almost in the same way as model 
contains tachyon dusts or tachyonic neutrinos (when 
1].( 1/0)' From Eq. (3.14), it is evident that when model 
contains tachyonic radiation (collison-dominated) K grows 
with 1/ logarithmatically and at 1/ = 0 it is indeterminate. Re­
sults 0.16) also shows that growth of condensation with 1] 

increasing when the model is filled with tachyons in super­
dense. The condensation is maximum when 

log 1/= (4N23) [tan-1(4/23) -B',]. 
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Comments on quantum systems subject to random pulsesa) 

M. Blume 

Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 
and State University of New York, Stony Brook, New York 11794 
(Received 28 February 1978) 

An error in a recent paper on this subject by Gzyl is corrected, His results are then identical to those 
obtained earlier by Clauser and Blume. 

In a paper in this Journal, Gzyll discussed the 
Schrodinger equation for a system subject to random 
pulses. This problem had previously been treated by 
Clauser and Blume. 2 with the equation 

i Ltl! =[Ho +~Vlo(t- tl)l?]! o I 

(1) 

for the wavefunction ?]!(t). Here the VI are random oper­
ators, and the times tl are random instants, assumed 
Poisson distributed. 

Gzyl states that Clauser and Blume integrated this 
equation incorrectly and that his solution "differs con­
siderably" from theirso It is the purpose of this note 
to show that Gzyl uses an unreasonable boundary con­
dition for the discontinuity in the wavefunction at the 
time of the impulse and that, consequently, his expres­
sion is simply the Clauser-Blume result expanded to 
first order in the operators Vlo He also draws the in­
correct conclusion that probability is not conserved when 
o -function pulses are applied. Reasonable boundary con­
ditions in fact lead to such conservation as long as the VI 
are Hermitiano 

Gzyl's error can be seen by considering the equation 

(2) 

Gzyl integrates this from to - h to to + h to obtain 

(3) 

which is an improper treatment of ?b(to) on the right side 
of the equation 0 The correct handling of the singularity 
can be seen by considering 

alWork at Brookhaven supported by the U. S. Department of 
Energy under contract EY-76-C-OZ-0016; work at State Uni­
versity of New York, Stony Brook supported by the National 
Science Foundation. 

~ = - iVj(t)IjJ(l) , 

with 

j(t) ={E-l, to -E(2 < t < to +E/2, 
0, otherwls e, 

(4) 

and integrating the equation before letting E - 00 We find 

J;(t) =expr - ivI:j(t')dl']IjJ(O), 

and 
'b(to + It) = exp[ - iV]'j) (to - h), 

with h >E/2, so that, as E '·0, 

u,(to+)= exp(-iV]?b(to-), (5) 

the result used by Clauser and Blume. Gzyl' s boundary 
condition (3) is the limit of duJdt=-iVj(t) l,(t-h) as 
E - 0 0 This equation is non-Hermitian> even if V is real, 
and leads to the conclusion that probability is not con­
served. Since 6 -function pulses are introduced in a 
model as a limit of pulses with finite width, Eq. (5) 
yields a physically correct choice of boundary conditions. 
Gzyl's result (3) follows by expansion of (5) to first or­
der in Vo Clauser and Blume correctly treat this sing­
ularity and their result [their Eqs, (3)-(6)] shows that 
with V Hermitian) the phase of the wavefunction is dis­
continuous, while the amplitude is continuous. Thus 
probability is conserved, i.e., (d/dt)(I~!(t)12)=0. If V 
is non-Hermitian, this is no longer the case. It is the 
non-Hermitian character of V which simulates the effect 
of a heat bath. The nonconservation of probability in 
GzYl's paper is seen to occur in second order in V and 
is again a consequence of his first-order expansion in 
V of the discontinuity in the wavefunctions. 

Ill. Gzyl, J. Math. Phys. 18, 1:127 (1977). 
2M.J. Clauser and M. Blume, Phys. Rev. 13 3, 58:J (1971). 
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ERRATA 

Erratum: Inverse Gaussian transforms: General properties 
and application to Slater-type orbitals with non integer and 
integer n in the coordinate and momentum representations 
[J. Math. Phys. 19, 52 (1978)] 

William J. Taylor 

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210 
(Received 5 June 1978) 

In Eqs, (36b) and (38b) the allowed values of J1 should read: n = I, 1+ 1, •••• 

Erratum: Large time behavior of the superfluorescent decay 
[J. Math. Phys. 19, 619 (1978)] 

V. Benza and E. Montaldi 

Universita Degli Studi Di Milano, Instituto di Scienze Fisiche "Aida Pontremoli, .. 20133 Milano, Italy 
(Recei ved 5 June 1978) 

Reference 6 should read: R. Bonifacio, M. Gronchi, 
L. A. Lugiato, and A. M. Ricca, "Maxwell-Bloch 
Equations and Mean-Field Theory for Superfluores­
cence -R. Sanders and R. K. Bullough, Theory of FIR 

Superfluorescence, .. in Cool) I' ml /1'(' Ef(('cl.-.; ill Mall (' r 
({Jlri R({dia/ioJl, edited by C.M. Bowden, D.W. 
Howgate, and H. R. Robl (Plenum, New York, 1977). 
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