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We derive and discuss three different parametrizations of the generator of a dynamical semigroup which
describes the Markovian relaxation of a spin j under the influence of isotropic surroundings. The relevant
parametrizations that we consider are the strengths of the polarities of the interaction, the relaxation rates
of the different multipoles and the transition probabilities per unit time among the Zeeman sublevels. The
results are model independent and allow us to derive a set of relations and inequalities for the transition
probabilities and for the relaxation rates whose validity is not bound to any specific assumption concerning

the mechanisms which govern the relaxation.

1. INTRODUCTION

Quantum dynamical semigroupsl‘3 with various de-
grees of symmetry are widely used in the phenomeno-
logical description of optical pumping of atoms and
molecules. *® In this paper we discuss three physically
meaningful parametrizations of the generator L of a
dynamical semigroup of an N-level quantum system S,
under the assumption of invariance of L under the ir-
reducible representation D’ [j=(N - 1)/2] of the three-
dimensional rotation group SO(3). From the physical
point of view, the system S can be thought of as repre-
senting a single spin j which evolves irreversibly in a
Markovian fashion under the influence of isotropic sur-
roundings, according to the equation

4 (t) = L) (1.1
dt
for the density matrix p(¢) which describes the state of
the system. One of the best known examples of a situa-
tion of this kind is provided by the relaxation, in a weak
external magnetic field, among the Zeeman sublevels
of the electronic spin of the ground state (or of some
excited state) of the atoms of an optically pumped atom-
ic vapor, when the atoms have zero nuclear spin.*

It is generally argued that the external mechanisms
which are responsible for the relaxation are such as
to justify the Markovian approximation (1. 1) to the gen-
eralized master equation which gives in principle an
exact description of the subdynamics of the spin, #+5-8
Then, the isotropy assumption is a good approximation
whenever the temperature of the vapor is high enough
and the external field is sufficiently weak that the en-
ergy difference among the different levels is much
smaller than 27 so that, at thermal equilibrium, the
Zeeman levels are almost uniformly populated.
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Even though our results are to a large extent known, ®—12

they have been derived so far only within the context of
specific phenomenological models for the mechanisms
governing the relaxation. On the other hand, our treat-
ment, which is based on the theory of dynamical semi-
groups, has the advantage of providing a unified and
simple proof of the results, which is generally valid,
granted the assumptions of Markovicity and isotropy,
independently of any particular model for the interaction.
In Sec. 2 we give the general form of the generator
L of a dynamical semigroup for a spin j, under the
assumption of spatial isotropy, as a function of the dif-
ferent strengths A; (J=1,2,...,2j) of the interaction
polarities. From this, we derive a set of inequalities
which have to be satisfied by the relaxation rates ¥, of
the different multipoles. Furthermore, we show that in
the special case under consideration positivity and com-
plete positivity'®*'! are equivalent.

In Sec. 3 we consider the parametrization of L in
terms of the transition probabilities per unit time W,
among the Zeeman sublevels and we derive the con-
straints imposed upon the W,,,. by their relations with
the parametrizations ¥; and ;.

2. THE PARAMETRIZATIONS 3, AND ~,

mm?

We recall that a dynamical semigvoup of an N-level
system is a one-parameter continuous semigroup /— A,
=exp(L#), £>0, of completely positive!®'! trace pre-
serving linear maps on the algebra M(N) of the NXN
complex matrices. Complete positivity, which is a
stronger property than positivity, has been recognized
to be a general feature of the dynamics of quantum open
systems, 1313

It was shown in Ref. 1 (see also Ref. 2) that a linear
operator L : M(N)~ M(N) is the generator of a dynamical
semigroup iff it has the form

L:p-Lp=-i[H,p] 2.1)
) N_2;1
+z .7—/1 e ilFy, pF¥]+[Fp, Ftl},
i,i=
pe M),
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where

H=H*, tr(H)=0, (2.1a)
tr(F) =0, tr(F¥F,)=0%;; (i,i=1,2,...,N?=1),
(2. 1p)
(2.1c)

For a given L, H is uniquely determined by the condition
tr(#) =0 and {cij} is uniquely determined by the choice
of the F{’So

{e;;} is a complex positive matrix.

A straightforward consequence of Theorem 5 of Ref.
16 is that the linear operator L : M(N)—M(N) is the
generator of a one-parameter continuous semigroup of
positive trace preserving linear maps on M(N) iff it is
of the form (2.1), where H and {F},, ,,... 52, satisfy
{2.1a) and (2. 1b) above and where {c”} is a self-adjoint
matrix with the property that

N1
ZJ(x\Fil.wc“(x Fiim=0

1,i=

(2.1c¢")

for all pairs of orthogonal vectors %) and |y) in @¥.
Denote by {1jm)} (i=(N~1)/2, m=j,j-1,...,-j) the
standard spin basis, i.e., Jyljm)=mljm), and by
D’ :R-D’(R), RcS0(3), the standard form of the ir-
reducible representation of SO(3) acting on €¥*!, namely
D(R) = exp(=~ i ;) exp(~ iBJ,) exp(— i1;), where @, B, ¥
are the Euler angles which define the rotation R
Let{T,4} U=0,1,...,2j; M=J,J -1, ..., - J) dencte
the orthonormal basis [w.r.t. the Hilbert—Schmidt

product (A1B)=tr(A*B)] in M(N) of the irreducible
spherical tensors,

J
D'(R)TsuD'(R)* = 2 Di(R) T, (2.2)
Gm| Taylimy=(yvzr<i(? 1 7Y, @9

m-m' -M
where the phase conventions are those of Ref. 17,
Appendix B.
We say that a dynamical semigroup on M(2j+1), A,
=exp(L¢), is invariant under D’ if
L(DY(R)pD’ (R)*) = D' (R)(Lp)D' (R)*,

VR <SO(3) and WYpe M(2j+1). (2.4)

Proposition 2.1: The general form of the generator
L of a dynamical semigroup A, on M(2j + 1) which is
invariant under D’ is

2§

LZD"LDZ—%Q)\JMéJ[Tfu,[TJmP]], (2.5)
pe M(2j+1),

where
=0 (U=1,2,...,2)). (2.6

Pyoof: Choosing for the set {F;} in Eq. (2.1) the
traceless tensors Ty, J=1,2,...,2j, M=J,J-1,...,
-J, we have

L:p~Lp=-ilH,p]
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J g
+3 2 2 2 Chle[Tw, pTH.]
T Izl Maud MO=aT?

+{ Ty Py THeye I} 2.7
From (2.4), (2.2) and the uniqueness of the decompo-
gition (2.7) we get

{H,D/(R)]=0, ¥ RcS0(3),

and

I J* ——
=2 2o Dig(R)cddi Do (R), ¥ RecSO(3).
Q=TI Q=
Hence, from the irreducibility of D¥ it follows that H =0
and that cyje =, 8;;+0,y., where, by (2.1c), A, = 0.
Then (2, 5) follows from the property TF, = (=Y T, .

QED

Regarding the physical meaning of the parameters
Ay, if we think for instance of the semigroup A, as ob-
tained in the limit of white noise € -~ 0, when the effect
of the surroundings on the spin is represented by an
isotropic stationary Gaussian fluctuating Hamitonian
H(T) =3 suTruViulh), VyulO)Vioyels))
=Ny 85540440 (1/6V M) expl - (2 - 5)2/€%), *® we see that the
parameter A; characterizes the strength of the (2)’ -pole
component of the interaction. An anologous conclusion
would hold in a weak coupling model. '*:2°

If the semigroup A; of Proposition 2.1 is required to
be positive (instead of completely positive), then, by
(2.1c"), its generator L still has the form (2.5) with
the coefficients A; satisfying

2 J
IR l<xiT.rM]J’>|220
J=1 M=J

(2.8)

for all orthogonal vectors 1¥) and |v) in €**!. Choosing
%) = |73

and

(K)>

L 0=

\V al(I{)lj;‘j+l>, K:O,l,...,Zj—l,

where the coefficients af’ are defined by the recur-
rence formula

K .. . .
af) =~ 3 I(K)<]].?TJ‘2j-1.l]"_]+l>,
129 T 41 (7]|TJJ s i—e)
aK(X)¢0,

one checks that
J
MZ || T a) 9% [% = constX 8y 3.,
==

where the constant is nonzero. From this it follows that
Mjxz0for K=0,1,...,2j-1, which proves that a
trace preserving positive semigroup on M(2j+ 1) which
is invariant under D’ is automatically completely posi-
tive. Note that this is by no means the general situa-
tion, since condition (2. 1c’) is a strictly weaker re-
quirement than the positivity of the matrix {c,;}. A par-
ticularly simple example is provided by the axially sym-
metric relaxation of a spin 1/2 in a strong external
magnetic field, As shown in Ref. 1, in this case com-
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plete positivity implies the inequality T«> 371 between
the longitudinal (7) and transverse (T.) relaxation
times, whereas positivity alone does not impose any
restriction on the values of T and 7T.. It is to be ex-
pected that complete positivity should imply stronger
restrictions than positivity on observable parameters
also in the general case of axially symmetric relaxa-
tion of an arbitrary spin j, as well as in the case of a
dynamical semigroup which is invariant under a redu-
cible representation of the rotation group, which cor-
responds for example to the description of the relaxa-
tion of two coupled spins (such as electronic and nu-
clear). These problems are currently under
investigation.

From (2.2) and (2.4) and Schur’s lemma we have
LTyy==7%Tsn (J:07 1,...,2j M:J’J—ly-°'s_J)y
(2.9

where ¥,=0, as follows from the fact that A, is trace
preserving, and (see Appendix A)

2j
V=2 Tk U=1,2,...,2j), (2.10)
K=1
with
_ 1 2ivle J4K K .7 ]
)y = (2K + 1)(-——2].+1+(-) T 2.11)

W,K=1,2,...,2j).

Equation (2. 10) has been previously obtained by Happer!?
in the framework of a model of a weak fluctuating per-
turbation with exponentially decaying two-point time
correlation functions.

In Appendix B we prove the following properties (I~
denotes the inverse of the matrix I ={I",}):

Ty >0 (J,K=1,2,...,2j), (2.12)
2_1'\
2 Tie=2i+1 (U=1,2,...,29), (2.13)
K=1
-1 _ 2K +1 _ 2j+1+J +K K .7 .7

T )JK—FJK—'—*ZJ.+1 =(-) 7l (2.14)
A®T gk +AOD, . +ACT,

_2K(K+1)(2K +1)

= ) (2J + 1), (2.15)

where

AO = J+ D2KEK +1) +J(J +1) = 4§+ 1)], (2.15a)
AP —g(J+1), A =g, (2. 15b)
gx)=x(2j+1-x)(2j + 1 +x). (2.15¢)

The parameters ¥; represent the relaxation rates of
the different multipoles T,y and they are the quantities
which are usually more directly accessible to experi-
mental measurements. * It follows from (2.6), (2. 10),
and (2. 12) that, except in the trivial case L =0, all
relaxation rates are different from zero. In particular,
this implies that any initial state relaxes to the termi-
nal unpolarized state p(w)=[1/(2j+1)] 1.
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From (2.11), the first two rows of the matrix {Tyx}
are easily found to be
_KE+1)(2K+1)
525+ 1)(25+2) °
_ BK(K+1)(2K+1)
Tw =G o125 @+ 3 [ -

(2.16)

(25 +3) = (K- DK +2)],

(2.17)

and the recurrence relation (2. 15) allows us to compute
the remaining matrix elements.

Equation (2. 13) implies that
Tley=(2j+1)|e),

where (jm|e)=p (Le @) for all m=4,7-1,...,~j

(by (2.12) there are no other linearly independent eigen-
vectors with positive components®!). In other words, all
relaxation rates are the same if and only if the strengths
of the different multipole components of the interaction
are all equal.

By (2. 10) and (2. 6), the relaxation rates ¥; must
satisfy the set of inequalities
25

2 (F-I)JKYKZO (le’ 2) :2])
K=1

(2.18)

Equation (2. 18) defines a closed hyperpyramid which,
except for its vertex, is contained in the open positive
hyperoctant. For example, in the lowest nontrivial
cases j=1and j=3% we have

<y, €3y forj=1, (2.19)
and
971—57’2+732 0
37 -15%+ Ty, <0 | forj=3. (2.20)
117, + 5% - 217, <0
Relation (2. 18) is equivalent to
min (M) sﬁs max (_rﬂ) (2.21)
1<xe2y \' yog Yre 1<k<25\Lseg

and, for a given value of X, I ;x/T j.x i8 the value of
the ratio ¥;/¥;. for an interaction of pure polarity (2)*
(i.e., Mg =Xd;¢; compare Ref. 12, Fig. 1). In par-
ticular, using (2. 16) and (2. 17) and the recurrence
formula (2. 15), one finds

3 Yo
2]'+3<71S3 (2.22)
and
Y5 < 6%y (2.23)

There is no simple expression for the lower limit

min (Tg/Tax)
1=K<25

of ¥3/7 as a function of j. Explicitly, we have, for
example,
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Tops _q___ 5
Tee \Ti; G+2)(25+3)

Tyojo_q__ 15j(2j-3)
ISR 2j-DG+2)(2j+3)

for j=%,2

(2.24)
Since FJI//FII :J(J+ 1)//2, we have
Tyx Yio1
max =max~L = 3J{J + 1). (2.25)
1<x<2; U 1x “1

We suspect that (2. 25) holds with the equality sign
(compare Ref. 12), but we have not been able to find a
proof of this conjecture.

3. THE PARAMETRIZATION W, ,, -

Another useful parametrization of the generator L is
provided by the transition probabilities per unit time
W,.w among the Zeeman sublevels, which appear in the
Pauli equation

d pm(f) = Z\/ [Wmm'pm'([) - Wm’mpm(/)]

< Py (3.1)

for the relative level populations p,(t)=p,,,(t)
=tr{P..p(1)) ={jm|p(t)i jm), where we use the notation
P = ljm)(im’l. We can write the master equation
(1.1) in terms of the matrix elements of p(#) in the
standard basis |jn1), Dme(t) =tr(P e 0(0)) = Gml p(D) 1im’),
as

d
'd—fpmm'(i): Z' 'me’rm'pnn'(f)s (3'2)
where
Lot it = (P ot | LP 1)
= e 23 (Pt | Tys) V5 (T 54y | Pre)
IM
. j j J
—{= 2_94-1-1*71-?!)ﬁ J+ J ) >
=) ‘,‘{,(2 U(m -m' -M
i J
x(n -n' -M)Y"' (3.3)
In particular, for the diagonal elements, we have
mem'm' :(Pmm|LPm'm')
25 ; :
_(_ 2i4lamamt J 7 J
={(-) JZ=11(2J+ D(m Zm 0)
x(3 7 dJ (3.4)
(m' -m’ 0) Yoo
and
YJ:—(TJO‘LTJO)
= Z} (TJO\Pmm)(Pmm\LPm'm')(Pm’m"TJO)
et i
_"%:'( ) (2J+1)<m Zm 0
of 7 j J) (3.5
(ml _mr 0 mem’m"

Inserting (3. 5) into (3. 3) we find that the off-diagonal
elements of the matrix {L ..} are completely deter-
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for 2<j=<¥.

mined by the diagonal ones. Furthermore, setting m=m'
in Eq. (3.2), we get (3.1) with

Wmm' = 5mm' +L (3. 6)

mmm*m? -

Therefore, under the assumption of space isotropy,
coherence effects do not play any role in the evolution
of the relative populations.

It follows from (3. 4) and (3.5) that only 2j of the
(27 + 1)? transition probabilities W,.mw are independent.
Upon insertion of (3.5) into (3.4) and using (3.6), we
obtain the relations satisfied by the W,,,.»

1

25 J
, = )2 i-m=m® 7‘
mm 2] + 1 + ( ) 2 [,

J=1 n,n?=aj

W (- y2g-n-nt

x 2jjJ><j jJ)(jjJ
2J+1
( )<m -uw 0/ \m’ —m’ 0/\n -n O
i J
X
(n' -5’ 0>W””"
Of the above relations, the following ones can also be
read directly from (3. 4)

(3.7

Wmm‘: Wm'my (3. 8)
u,mm': W-m —mts (3. 9)
2 Wome=1, (3.10)

m
whereas the remaining ones have to be computed ex-
plicitly from (3.7). For example, if j=1, (3.8)~(3.10)
are the only independent relations implied by (3.7).
Choosing W;, and W; ; as the two independent transition
probabilities, we have by (3.4)

Wyg=7/3, }

Wia=(1/2)~ (/6). (3.11)

1f j=3/2, using (3.8)—(3.10), one derives from (3.7)

the following extra constraint

4W sy arn = Warayarn +3Wa ey = 3Wasey )
=0 (3.12)

and, by (3.4), we have

1
Waryarey = 55{— 3%+ 57 + 3%),

1 .
Wa syt = 3537+ 5%, = 3%),

1
W9 372 = 35@71— 5va T 73), (3.13)

1
Wit ety =35 (v1— 572 + 973

Equations (3,12) and (3. 13) have been previously re-
ported by Papp and Franz, 2

Using (3,4), (3.6), and (2,10), one obtains the follow-
ing formula which expresses the W, . as functions of the
parameters A;:

1 ¥
g ’ — +
Wt = B [1 2j+1JZ=)1 @J mJ]
Zj J N . . .
i JN(F 7 J)

+Jz=)1 MZ=)-J(2J+1)<W -m’ - W)(-’n -m’ -V A
(3.14)
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From this equation it is easy to derive the usual
selection rules on the transition probabilities, depend-
ing on the polarities of the interactions, For instance,
if A;=0for J> K, we get the well known selection rule
ram o= K,

Finally, imposing the positivity of the W ., one ob-
tains from (3, 4) and (3. 6) a set of inequalities for the
relaxation rates y, (compare, e,g., Ref, 22), However,
these inequalities are strictly weaker than those ex-
pressed by (2.18), This is a purely quantum mechanical
effect, which follows from the fact that the expression
tr[ P;L(P,)] must be nonnegative for an arbitrary pair of
mutually orthogonal one dimensional self-adjoint pro-
jections Py and P, (compare theorem 5 of Ref, 16).
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APPENDIX A
Equations (2. 9) and (2. 5) give

Ys=— tr[T}ML(TJMH

2§
:KEI FJKAK (J:I,Z,,.,,Zj),
with
L&
Prp=2 Z tr(T}M[T;Q; [TKQ, TJM”) (A1)

Qu-K

or, equivalently, by the completeness of the irreducible
spherical tensors,

. 27 K K'
FJKZE 2 E

K'=1 Q==K (==K’

tr(Tko [Tra, Tryl)

Xte(T5ul Thay T, (A2)

Then, one obtains (2, 11) by inserting into (A2) the ex-
plicit expression of tr(TﬁiMi[TJzMz, T u5)) in terms of
products of 3-j symbols and using standard identities
and sum rules for the 3-j and 6-j symbols,

APPENDIX B

We can rewrite (A1) as

Wi

K
Trp=z E ”[TKQ, Tm]”%,

K

(B1)

where [[Al], = vir(A¥AY denotes the Hilbert— Schmidt
norm, Then, since for example the matrix element
(77! [Tk1, Tr 4]17) is nonzero for all J,K=1,2,...,2j,
it follows that the rhs of (B1) does not vanish, which
proves (2,12),

From Eq. (2.11) we have

& (2 +1)'~1
Z‘l FJK:—LﬂLl— + (_)Jd
=1 ]

=

2 .
T (e )2K {K J J}
S AR P
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and (2, 13) follows from the identity

2}’3 (_)2i+K(2K+1){K _7 7}

k=1 Jjj
= 1—_)"__1_ =1 2) (B2)
571 yeeos2f).
In order to prove (2.14), we need the relation
(TY,x=0,5+ (2K +1) (B3)

which follows from (2, 11), (B2), and the identity
25 .. s _\J+K+1
5 (2K’+1){J j Jl{K j ]}* s, (=)

K=t

K joillK § 3T 2k+1 " (@ +1)? °
Then, by (B3) and (2.13), we have
211 A

2] 9K +1
E FJK’<1_\K’K- >:(F2)JK—

- Iyge
K21 2j+1 2 +1 g T

= 5JK°

Finally, the recurrence relation (2, 15) is obtained
from (2.11) and the analogous recurrence relation
satisfied by the 6-j symbols.*

Note added in proof: After this paper went into print,
we discovered the important review work on optical
pumping and relaxation by A. Omont, Progr. Quantum
Electronics, 5, 69 (1977). In Appendix B of the paper
the author derives a general form for the rotationally
invariant generator in the reducible case, using the
general phenomenological theory of relaxation, In the
special case of reducibility he obtains formulas (2.10)
and (2.11) and explicitly derives Eq. (2.22).
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Generation of stationary axisymmetric Einstein-Maxwell

fields

Yukio Tanabe

Department of Physics, Nagoya University, Nagoya 464, Japan
(Received 3 February 1978)

A method is presented which allows one to generate new solutions from old ones. Kinnersley’s functions u,
v, w associated with the old solutions must be stationary, axially-symmetric, and satisfy a linear
equation a*u + b*v--c*w =0. The method generalizes work of Bonner and Misra et al. who obtained

a electric/magnetic dipole solution from the Kerr solution.

1. INTRODUCTION

Mainly because of the complicated nonlinear struc-
ture it is a very difficult problem to find new solutions
of the Einstein—Maxwell equations. Several authors
attacked this problem by seeking methods by which we
can generate new solutions from the known ones, '~’

In this paper we formulate a new generating method
which generalizes work of Bonner® and Misra ef al.’

The method involves an unfamiliar symbol j with proper-
ties ?=~1, j* =4, Its mathematical implication is dis-
cussed in the Appendix,

Il. FIELD EQUATION

We consider stationary Einstein—Maxwell fields
whose metric can be written as

ds® =f(dt + w, dx™? -y, . dx™ dx", (2.1)

where the indices mw,n take values 1,2,3 and the func-
tions f, w,, ¥Yma do not depend on ¢, Israel and Wilson®
showed that the Einstein—Maxwell equations are equiva-
lent to the following simultaneous equations for two com-
plex functions £, & and the metric v,,,:

(Re & +]0|) V2E =VE < (VE +28%V D),

(Re& +|®|H) V2o =Vd - (VE +20*V ),
R (v)=Re& +|2|)?(1/2) En E*n
FBE (q®*my + BF EX By = (E +EF) (0¥ ],

(2.4)

where V= (V!, ¥?, v3) ig the covariant derivative with
respect to Ypu, Rna(¥) the Ricci tensor associated with
Ymns 04 X(ndm the operation z[(3,x)(3.) + (3.x)(@n¥)].
From ¢ and &(=4,+iA’) the functions f, w,, and the
electromagnetic field F,, are obtained by the formulas

(2.2)
(2.3)

The equations (2.2) and (2. 3) become
wU—uW:O,
—v(U+W)+u+w) V=0,

where

Us=(lu|?+]v]2= |w|) VU= 2*Vu +0*Vv - w*Vw) - Vu,
V(|2 +]v|2 = w|DV - 2* Ve + 0¥ Vo = w*Vw) « Vo,

W=(|u|2+|v |2~ ||V — 2(u* Vu +0* Vo = w*Vew) « Voo,

Concerning the replacement (2. 5) Kinnersley argued as
follows: “There is redundancy in a description of this
sort. In particular, we may choose w to obey any field
equation we please, in order to obtain simple ones for
u,v.” His choice is W=0. Then we have U=V =0.

However it is more convenient to choose W=Fw so
that we have

U=Fu, V=Fv, W=Fuw, (2.8)

where F may be a function of x™. The function F is
closely related to the fact that only the ratio of u,v,w
enter into Eq. (2.5). In fact if a set of functions (u,v,w)
satisifes Eq. (2.8), a new set (u/, v, ')

= (", i1, h'w) also satisfies Eq. (2.8) with the

new function F’ given by

Fr=n [ n|2nF - (|u]?+]v |2 =|w|?) v
+ 2(u*Vu +v* Vo — w*Vw) - Vi],
where & is an arbitrary function of x™,

In Sec. IV we shall formulate a generating method on
the basis of Eq. (2.8). For later convenience we re-
write Egs. (2.8) and (2.4) in the form

U, u) Vu — 2u* , Vu® - Vu="Fu, (2.9)
f=Re& +|]?, R
N = * *
D= B0y == ™ 2 T2, +28%2,9), Ronl) = g L% 0e) Gy, )
Fy,=0,4,, — {u*, W@, ], (2.10)
Fop= wmanAO - wnamAO +f-1 emnk'yualAl ’ where
where €,,,, is the totally antisymmetric tensor with u="{u}=(u,v,w),
€123 =[det(y,)]'/? and ¥™ the inverse matrix of ¥,,. ) ) .8
w*,uy=|u |2+ v |2 = |w |2 =n4u*u®,
Kinnersley® replaced & and ® by three complex func-
tions u,v,w: 10 0
U - v um:naﬂu85 NnaB“: 01 0 ° (2»11)
= = . 0 -1
< u+w’ utw ° (2.5) 0
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Hl. OLD SOLUTIONS

Old solutions must fulfil the following two
requirements:

(A) The metric y,,, must be of such a form that
Eq. (2.9) is practically independent of v,,. This im-
plies that the metric v,,, is determined after the solu-
tion u of Eq. (2.9) is obtained. In this paper we consider
the axially-symmetric case in which the metric takes
the form

- exp(2y)(dp? +dz?) + p* d¢?]
(3.1)

ds? =f(dt — wdp)?

where f, w, and y are functions of p and z.

(B) Kinnersley’s vector u associated with old solutions
must satisfy

(3.2)

where a=(a,b, ¢} is a constant vector. The equation
(3.2) implies that u lies in the plane orthogonal to a.
We introduce two linearly-independent constant vectors
e; and e, on this plane such that

{a*, u)=a*u + b*v - c*w =0,

(a*y eA>:O; <eA*;eB>:"~]ABy AyB=1)2- (3-3)
Then the vector u can be written in the form
u=z'e, +2%,. (3.4)

Because u is a solution of Eq. (2.9), the functions 2

satisfy the following equation:

(z*,2)Viz - 2z }VzA.Vz=Fgz, (3.5)
where

z=(2',2%), z 4 ="452",

(2*, 2) =T, p2* %2 2. (3.6)

This two-component Kinnersley’s vector z will be used
to generate new solutions,

In the remaining part of this section we investigate
what solutions satisfy the condition (3.2).? Since the
condition (3.2) is SU(2, 1)-symmetric we may consider,
without loss in generality, only three cases in which
the vector a take the following forms

a+=(07150)’ (af,a,>=1,
%:(0,1,1), <a'3<ya‘0>=0;
a.= (0) 0, 1)7 <a-*7 a'->=-

Then the vectors u which satisfy Eq. (3. 2) become
®*,0,w*), @° w’,w®) and (", v",0).' If we choose the
basis vectors e, in the form

3.7

e;: (1’ 0, 0)’ e;:(oy 07 1)’

e!=(1,0,0), e)=(0,1,1), (3.8)
e;= (1) 0, 0), 62-2(0, 15 0),

the metric 7,5 and the vector z are given by
1 0 + + +
asl=[5 ], 2 =60,
~ 10
Il =g o | 2=000, (3.9)
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”ﬁ:{B”=[(l) (1)]; Z-=(u-,'l)-)o

Since only the ratio of #,v, and w is significant, these
solutions are uniquely described by the potentials
0 -

g-:

ut
w

u
E*: ’ §0=m’

. (3.10)

c'lx

+

By setting w*=#"=v"=1 in Eq. (3.5) we see that the
potentials £*, 50, £” must satisfy

(ler]2-1 =2EMVE L VEY, (3.11)
v? 1/£°)=0, (3.12)
(Je P +1) Ve =2e*ve - v, (3.13)

The equation (3.11) is the well-known Ernst equation'!
and its known solutions are those discovered by Weyl, 12
Kerr, ¥ and Tomimatsu—Sato. !4 Since Eq. (3.12) is a
linear equation, the potential £ determines a very wide
class of solutions, which have been discussed by
Perjés'® and Israel—Wilson. ® Some solutions of

Eq. (3.13) have been obtained by the present author. ?
Hence we have many solutions which can be used as old
solutions. Simple examples are the followings®:

g=px-igy (p+qt=1),
50:55'- iy’
Er=px-igy (pP-qt=1),

where (x,v) and (%¥,v) are the prolate and the oblate
coordinates defined by

(3.14)

p=kl(x2=1)(1=9y)]/2, z=kxy,
p=RlE +1)(1 =) 1’2, z =iy, (3.15)

IV. NEW SOLUTIONS

We seek new solutions which fulfil the requirement
(A) of the last section and whose Kinnersley’s vector

u® is given by

u®* =b% 5242 %8 (4.1)

where b 45 is constant. It is easy to see that the form
(4.1) is a solution to Eq. (2.9) provided

(4.2)
(4.3)

®Xs, bep) =0T 4sTpe + THacTipa,
NP +TpPaa—Tadbsp—Tpebea=0,

where 0 and 7 are real constant (0 +7#0) and b, is a
vector with components (b!,5, b245, b%,45). Using
Eq. (4.2) we obtain

¥, W= (0 +7)(z*,2)°. (4.4)
Because u can be replaced by k™'u we may set

o+T=3%, (4.5)
without loss in generality.!” From Eqs. (4.1) and
(2.10) we obtain

(R n) Jaow = 47[R n () o14 - (4.6)
This gives, for the metric (3.1), the relation

Ynew =4TYo14- 4.7)

Later we show that T=1 [see Eqs. (4.10) and (4. 11)].
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Now we determine the vectors b,z which correspond
to the metrics 3% given in Eq. (3.9). The condition
(4. 3) implies the relations
bj;=bs,, bl=0, bj =-b;, (4.8)

for (AB,CD)=(11,22), (22,11), (12,12), (21,21) and it
becomes the identity 0=0 for other indices. Part of the
condition for 7,5 implies

0%+ 7= Qif, biy) = = bif, by =~ 0*

or

20* +7%=0, (4.9)
Combining Eq. (4.9) with Eq. (4.5) we obtain

g% =~} T*=1. (4.10)

Since the condition (4. 2) for 7% contains 0 and 7° only
in the form ¢+ 7% we may choose

0 L

o'==3, T0=1, (4.11)

Using the values (4.10) and (4.11), we tabulate the con-
dition (4. 2) for each case:

W, bep) |00 12 21 o3, bepy ] 00 12 21
00 1 0 0 00 1 0 0
12 0 -1 0 12 0 1 0
21 0 0 -1 21 0 0 1

%,b%,) o0 12 21
00 1 0 o

12 0o 0 o {4.12)
21 0 0 o
where
to==V2 b =+V2 bl bl =V2 b, (4.13)

The conditions for b% 5 cannot be satisfied by the usual
complex vectors, because the inner product {o*,b) has
the signature (+, +, -}. Fortunately, however, as is
shown in the Appendix the vectors #* can contain a
symbol j with properties

ji==1, j*=j. (4.14)

The symbol j in the vectors u® may be interpreted
either as an imaginary unit in the functions f, w,,

Ymns Fup O as an auxiliary symbol which can be elimi-
nated from the final expression. With the help of j we
can obtain many sets of vectors which satisfy the
condition (4.12), The followings are simple examples:

1 0 1 0
w=l0], bh=—|-i Bh=— |4
00— ’ = ’ = 3
0 V2 | V2 1
-1 . 0 . 0
bl,=] 0 |, bly=—=|j+e'’ |, bYy=— ]_ew
LO 2 j+eiw \[§ ]_eiw ’
b; (1) by, = — (1) by, = — (1)
00 = , 12 = T — » 21 = T — ’
0 V2 Ly V2| _y
(4.15)

where ¢ is a real parameter. Then Eq. (4.1) becomes

Class I,
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_u ‘N*|2+‘W+IZ
1
v =—= | 2jIm@ w**
5| Y )|
Lw 2 Refu’w**)
Class 11,
r=
u - {u“\z
o 2i Re@ ™) + 2 exp(i@) Im @Y% ™) | ,
V2
w 2 Re(u"w"*) + 2 exp(i®) Im (u'w"*)
Class III
u u'|2—‘v'|2
1
P o= 2Re(u™v™*) (4.16
o )
w - 2§ Im(uv™*)

Thus starting with the solutions described by the poten-
tials £*, &% ¢ we can generate new solutions by the
formulas (4,16). From the potentials given in Eq. (3.14)
we obtain

[ 7>2x2—§2y2 1
Lo =% | -m , (PP =F=1),
w L 2px
(] i x?—y? _\
m ol = % o - 2explio)y | (4.17)
w ’ 2x - 2 explip)y
“u T . [ % —ghyi-1 :|
o |» | = = 2p% , (pP+q*=1),
" - 2gqy

where wé made the following repla_cementsw:

I. jg—q, 1. ji—x, 1. jg——q.

The expressions (4.17) do not contain the symbol j and,
if desired, we can easily acertain, without recourse to
j, that they are solutions of Eq. (2.9). The first vector
in Eq. (4.17) leads to the Bonner—MPST solution and it
turns out that the Class I transformation corresponds

to the generating method discussed by Bonner® and
Misra et al. " The Class II, 1II transformations are new.
Some solutions obtained by our method are listed in a
separate paper,!®

APPENDIX

In this appendix we clarify the mathematical implica-
tion of the symbol j. At first sight the 7 seems to be
a very curious symbol: its sign does not change by
complex conjugation in spite of its imaginary nature.
However this apparent difficulty disappears when we
realize what is meant by complex conjugation iz a com-
plex-potential formalism. The point is that the imagi-
nary unit whose sign must change by complex conjuga-
tion is only the one which is introduced by hand in the
course of the reformulation of the Einstein—Maxwell
equations. If the potentials contain an imaginary unit
of a different origin, its sign had rather remain un-
changed by complex conjugation. Such a case occurs
when the coordinates x™ and the parameters
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c¥(N=1,2, ) take complex values.?’ We set
xm=xP +jxy, c¥=c{ +jcg, (A1)

where a new symbol j is employed as an imaginary unit
(j2=-=1) in order to indicate that it has a quite different
origin from the imaginary unit 7 used for the complex-
potential formalism. For the imaginary unit j we have

J* = (A2)
To gain an insight into the role of the property (A2)

we analyse the complex-potential formalism of Ernst.!!
Consider the following system of differential equations:

VY =Vf V=V Vo, fVo=2Vf-V¢. (A3)
Ernst introduced a complex potential

&E=f+ig (A4)
and obtained a single complex equation

Ref Vi =VE V&, (A5)

Usually it is considered that Eq. {(A5) is equivalent to
the system (A3) only when f and ¢ are real functions,
However it can be easily shown that the formal realities

f*:f; ¢*=<ﬂ (AS)

are sufficient for Eq. (A5) to be equivalent to the sys-
tem (A3). In fact, under the condition (A6) the equation
(A5) and its conjugate equation become

YU +iQ)=V(f +ip)-V(f +ip),

Y =i@)=V(f=ip)-V(f=-ip).
The addition and the subtraction of these equations
leads to the system (A3). The role of the property (A2)
is to guarantee the formal realities (A6) even when the
coordinates and the parameters are complex numbers.
Accordingly, if the system (A3) is satisfied by complex
functions f and ¢, then Eq. (A5) is satisfied by a poten-
tail £ containing the symbol j, and vice versa.

(A7)
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Similar consideration applies to the complex-potential
formalism of Kinnersley. The symbol j contained in
u,v, and w is interpreted as the imaginary unit which
makes the functions f, w,, ¥,., and F,, be complex.

If j is contained in the form (Al) we can eliminate j
from u,v, and w by analytic continuation.
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Theorem on the representations of SO(n) groups
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It is shown that 8O(n) groups (n> 5) that possess a c-number Lorentz Casimir operator F do not have
infinite-dimensional representations. Accordingly these groups cannot support new positive-energy wave
equations of Staunton type. In an appendix Staunton’s spin-1/2 positive-energy wave equation is extended,
in an analogous manner to that used by Rarita and Schwinger (RS) on Dirac’s equation, to yield positive-
energy wave equations for arbitrary spin. It is noted that analogous auxiliary conditions to those of RS do

not hold. Stationary solutions for low spin are listed.

I. INTRODUCTION

Two spin-3 equations® exist that are representations
of the SO(3,2) group, such that the Lorentz Casimir
operator F is a c-number. One of these, Dirac’s equa-
tion,? serves as a starting point for much of modern
physics. It has been extended, by Rarita and Schwinger?
among others,? to provide relativistic equations for
other spins, The other equation, Staunton’s positive-
energy wave equation,® has only recently been dis-
covered and while some of its properties are known,®
its full range of possible uses in physics have not been
explored.

Positive-energy equations for other spins are ex-
pected to exist.” It is the purpose of this paper to show
that when the Lorentz Casimir operator F is a c-number
there are only finite-dimensional representations of the
SO0z, m) group (n+m >5).% Accordingly one must seek
higher spin positive-energy wave equations® by looking
in other directions.!® In an appendix we demonstrate the
analog of the Rarita—Schwinger procedure® for obtaining
a spin- positive-energy field from the known Staunton
spin-3 equation. This is not the same thing as finding a
positive-energy spin-3 equation of Staunton-type because
auxiliary conditions must be imposed.

In Sec. II, Staunton’s equation is briefly recalled.
Section III contains our theorem on the SO{n, m) group.
It shown that Staunton’s spin-4 equation is the only one
constructible as an infinite-dimensional representation
of an SO(z, m) group (n+ m > 5) that contains the Lorentz
Casimir operator as a c-number. Appendix A, which
contains the Rarita—Schwinger type extension, contains
one new point: The subsidiary conditions are shown to
be different from those in the Rarita—Schwinger case.
Solutions for stationary cases are given in Appendix B.

iIt. STAUNTON'S SPIN-2 EQUATION
Staunton’s spin-3 positive energy wave equation® is

T, ¥(* q,,q,) =0, (1)

where ¥ is a space—time scalar function and a function
of internal variables ¢, and g,,

T,=~P,+iS, P +mV,, P, =id,. (2)

==
The operators S, and V, satisfy the 80(3,2) Lie algebra
commutator relations

[Suv’ Sno] = i(gunsvu - guasvp + guusup = gvosuo) ’

1812 J. Math. Phys. 19(9), September 1978

0022-2488/78/1909-1812$1.00

[Vu’spa]:i(guuvp_gupvu)r (3)
v,,v,l=d

uv’

The operators §,, and V, may be realized by the
second-order operators:

Sa3==2(g,q, + n,7My),

Sy =-3lgd+nt-a2~73),
S12=—2(gam — q1n2)s

(@3 -ni~d3+n3),

10

Sio=1%
Sa0 %(nlnz - 4,q2)s
S30=%

I

20 =30+ 12q2), (4
Vo=1lq; +¢3+ 7% +n3),
Vi=3(=qm +qm),
Ve=z2{gm, + a.n,),
Vi=ilgd + gt ~m-n3),
where n, =~13/2g,.
The free-field momentum eigenvalue solution® is
¥ = (Aq, + Bq,)¥,(q,p) exp(-ip*x,), (5)
where
Volg, p)=exp{- 2(po + p)"[mlgl + 43)
+ip, (¢} - 43) - 2ip,01a.1} (6)

and A and B are arbitrary. A and B provide the two
spin-3 degrees of freedom. Note also that m is the
particles’ rest mass. All these results follow logically
from the representation condition that F=3S, S** be

a c-number.?!

i1t. THEOREM ON SO(n)

Theorem: If the Lorentz Casimir operator, F, of the
internal group SO(n), n>5, is a c-number, then the
group does not have any infinite-dimensional represen-
tations.

Pyoof: Consider an internal group SO(n)!! whose
generators satisfy the commutation relations

[Sas>Scpl=1i(gucSsp = 8apSac + &opSac = 8scSan)y (1)

where capital Latin indices range over the (n’ + 4)-direc-
tions of the space (' >1) that are labeled by four-
valued lower case Greek indices and the »’-valued
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lower case Latin indices. Then S,;=1{S,,,S,,,S,,}. The
metric g,, is diagonal with components of magnitude
one.

Taking the Lorentz Casimir operator F=4§,,5*" to
be a c-number, evaluating the commutator of S, ; with
F, and also the commutator of S,, and S,%, one obtains

S,,5.7=3iS,, ==-5,°,,. @)
Now define D,; as
D,,=S5,,S,". )

iu™j
The results of the evaluation of [S,,,5,*] and of [S,,,
S;,15*¥, using Eq. (8), may be compared to yield

D,,=2iS;, + %g,,F. (10)

Upon contraction of Eq. (10) with g/ and with S/, we
obtain

D=D, g!=4n'F=S5,,5t, (11)
S$4D,, =2iS¥S,,. (12)

Since [S,,548,5,,]=0 (this follows from the Lie
algebra), it follows from Eq. (11) that [S,,,S,S/*]=0.
Taking (S ;,S,,8/*|=0, and expanding the commutator

[S;,,S",] we find

8,87, =~ kitw =1, =S,S,,. (13)

Similarly to the above, define

D,,=St,, (14)
form [3,,,5%,] and compare it to the evaluation of [S,,,
S;,I8%%, using (13) to obtain

D, =sn'g, F+zin'S,,, (15)

5, S =5n" (' ~1)F. (16)

Since division by n’ ~1 is involved in obtaining (15),
this is the place where a difference between the present
work and the case considered by Staunton and Browne
(w’ =1) occurs.?

Compute [S;,,5,,] $** and [S,, ,S;,]5* by two methods.

Obtain
£1,(8,,8°% = $i5,%) = =5 (5,7 + $i0g) an
+ 67Dy, -8.5,%,
and
8alSuSH -2l - 1)8,,]=2,[D,, - 3ilw’ - 1)S,,]
=5.a5:15 = 5154a (18)
Contract (17) with g/ and S¥/, Find, using (16) that
SuyS"% = $FO] —n'"'D,* +3i5,%, (19)
D,y = ;iF(gm +2iS,,). (20)

Similarly contract (18) with g** and g’/. These opera-
tions yield

n .
S =5 Fay - D, +3iln’ =18, (21)
and
D,, =3n'Fg,, +3in’S,,. (22)

Comparison of (20) and (22) indicates that
F=1, (23)

e
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and therefore D=7', while §¥S,,=4n'(n’ - 1). Ac-
cordingly, S,,S48 =%(n' +3)(n’ +4). Since 80(3,1) is a
noncompact subgroup, by assumption, the representa-
tion considered is shown to be nonunitary and finite-
dimensional. The theorem is proven.

In what follows we generate the connection between
the representations considered and Dirac matrices.

The other Lorentz Casimir operator, G, is given by

G=3e* 55 S ;. (24)
The operator £,, is defined by
Qqu[Siu!G]’ (25)
and is found to be
Qm = %Eu vposupsia . (26)

Squaring (26) and using (22) and (23) we obtain
Q,, o ==9n' /4. @7

This ensures that G is not a ¢c~number. If G were a
c-number, then (25) would indicate that @, =0, in
contradiction with (27),

By utilizing (22) and (26), we establish that

. 3n’

Sla QtB = —2_gaBG - —B_eaﬁpuspa’ (28)
t0a’ I’

Q‘BSid :%gaﬁc - _g—EaBpGSW' (29)

Multiply (26) by S,? and use (13) to obtain
Sy =~3il' -1)Q,,. (30)

Now multiply (29) and (28) together, contract, and
utilize (10), (18), and (30) to find

G? =~ 1_96 (31)
From (15) construct
’
Duv+Dvu =Siusiv+sivsiu :%guv' (32)

The results embodied in (23), (31), and (32) indicate
that a finite dimensional matrix representation exists
for any SO group within the scope of this discussion,

It is realizable in terms of finite matrices whose ele-
ments may be grouped as Dirac y matrices. Note that
the representations permitted are nonunitary. Also
note the sign of G2, Therefore, despite the large num-
ber of scalar operators constructible, no positive-
energy infinite-dimensional wave functions exist for the
groups being considered.

As an example of the matrix representations, con-
sider the six~dimensional case. In six dimensions,
with 7, j=5, 6 one may take

—
Y, O
Ssu, = %(gss)l/z s
o -
—
0 7,
Seu :%(gss)uz
Y, O
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Then

01
Sgg=~— %i(gssgee)l/ 2 ’
10
Ys O
G=- % ’
0 v
and
Yu?s 0
2y, =- %i(gss)vz ’
0 =77
0 7%
R, = — 3i(gee)
¥ O

For the general case we include, for completeness,
some other interesting relations that may be obtained:

S, Q,, =3iQ,, +4S,,G,

Q S“:-i

juty 2in+4GSiv’

(33)
D, =~(n'-2)Q* =D,
$4(S,,8,, +8,,5;,) =—n'(' = 1)S

b —ant
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APPENDIX A
Consider the SL(2, C) generator M, given by
Muv:Luv +Euv +Suv’ (Al)
where
L,,=il,0,-%9,), Z,,=- 5ir,,%),

and v, are the Dirac matrices and S, are given by
Eq. (4). In some cases one or more of the terms in
(A1) may not be used.!?

Now let ¥ be a multicomponent wavefunction instead
of a scalar. The multiple components may varicusly be
labeled via tensor indices, Dirac spinor indices, or
both. These indices will be suppressed for most of this
appendix.

The wavefunction that describes the new field is re-
quired to separately satisfy Eq. (1) for each of its
components. It also must satisfy

W, W =~ m%(j+1)¥, (A2)

where m is the mass and j the spin. Here W, is the
Pauli—Lubanski operator for the particular M, , con~
sidered. By construction, ¥ transforms like a spin-j
field under the action of the Lorentz group generated
by M.
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Several points should be noted. First, the solutions
may be obtained in all cases by use of Clebsch—Gordon
coefficients for addition of angular momenta.!® This
means that one may immediately write solutions for
all the interesting low spin cases. These are tabulated
in Appendix B.

Secondly, only a few low spin possibilities occur.
There are only a few types of field for each spin that
may be generated by this method. (For spin 0 there
are three; for 3 integral spin there are four; for integral
spin there are five.)

Third, auxiliary conditions exactly simitar to those
that hold in the Rarita—Schwinger spin-3 theory (i.e.,
Py =y*¥ =0} can not be applied here. For example,

in the case of a vector field, ¥ , we have

T,¥,=0=(~P,+iS, P +mV,)¥,, (a3)

which implies on contraction with ¥* 5 the Majorana
equation

(VeP, - m)¥,=0. (a4)

Then if P*¥ =0, upon contraction of (A3) using (A4)
and (3) we obtain

(V¢ P, = 2m)V¥ =0. (a5)

In the stationary case [adding a u index to A and B in
Eq. (5)] this equation is identically satisfied and of
course ¥, =0 (4,=B,).

However if V*¥, =0, upon contraction of (A3) using
(A4) and (3) we obtain

Py =0.

The condition V*¥ =0, evaluated for the stationary
case solution (equating coefficients of independent in-~
ternal functions of ¢, to zero) gives the following re-
lations between A, and B,

A ==iA,=—B,,
B, =iB,=A,.

Thus there are only two independent components
among the eight components of ¥, in this case: not
enough for a spin-3 particle. Accordingly the condi-
tion V*¥, =0 may not be imposed.

Just as Staunton’s procedure® offers an alternative
method of taking the “square root” of the Klein—Gordon
equation, it should be possible to use higher spin
fields to find a “square root” of Einstein’s gravitational
equations via positive-energy wave equations. This
would be analogous to the one found by Teitelboim
using standard spin-% fields, All questions of super-
symmetries within the framework of positive-energy
wave equations, as well as those of interactions between
fields each with positive-energy internal coordinates,
to our knowledge, remain unexplored.

APPENDIX B

There are three methods by which spin-0 wave equa-
tions may be constructed. The first is the standard
Klein—Gordon scalar field equation itself. The second
method involves a field with internal coordinates ¢,
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q, and a spinor index. The third involves a field with
internal coordinates, a spinor and a vector index.

The spin-eigenvalue forms of Eq. (5) occur when
B=—3A (+3%) and when B ={A (- %). Denote these
solutions of Staunton’s equation by 1S+) and IS —)
respectively. Denote a Dirac column spinor, with
eigenvalues of %, that are +3, -3 by | D+) and 1D =)
respectively. Also denote a spacelike space—time
vector field whose z components are +1,0, and -1
by |V +), |V0), |V -), respectively.

Then using Clebsch—Gordon coefficients,'® the two
new spin-0 wavefunctions satisfying Eqs. (1) and (8)
are ¥, o ,and ¥, . ., where

\IID,S,O:é\/?[ (D'*') !S">_ lD_> ‘S+>]:
Vpsmo=3V3 [[D+)[S+)[V=)=3/2(|D+) |S~)
+|D=)[S+)) |voy+ |D-)y|s )|V +)].

There are two ways to compose spin 3 in addition to
“pure” Dirac or Staunton fields. These are by adjoining
to either field a space—time vector index. When the
Dirac field is so acted upon, the Rarita—Schwinger
case is obtained. It includes a spin-3 component. The
only new case involves a field ¥ ,,,,, given by

T,y (spinup) =+3V3 [+ [S+)[V0)y-v2|s )|V +)],

and

Fg, o 2(epin down) =5V3 [+V2 [S+)[V =)= |S=)|V0O)].

The new spin-; field obtained, ¥g,, . ,, is given by

U, poga(+2)=|S+)|V+),
Tg,pra2(+3) =3 32 [S+)[VO)+ S|V +)],
Vs,va2(=2) =332 |S= ) [VO) + s +)| V=),
Us,piapel=3)=[S=)[V-).

Some of these cases may allow a minimally coupled
electromagnetic interaction. This is currently being
investigated. The possibility of such an interaction
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exists because the fields are required to satisfy, for
each component separately, Staunton’s equation, which
permits such a minimal coupling.

11,, P. Staunton and S. Browne, Phys. Rev. D 12, 1026 (1975).

2pP.A.M. Dirac, Proc, Roy. Soc. A 117, 610 (1928); 118,
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(Interscience, New York, 1956), Chaps. 4, 5, and 8.
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for the case of Dirac’s noninteracting spin-0 positive-energy
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Physics (Wiley, New York, 1952), p. 792.

Q. Teitelboim, Phys. Rev. Lett. 38, 1106 (1977).

K. Fisher and H.F. Ahner 1815



Field equations and integrability conditions for special type

N twisting gravitational fields

F. J. Ernst and |. Hauser

Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616

(Received 16 January 1978)

We let SNT designate a special kind of twisting type N gravitational field solution of the Einstein field
equations, viz., one for which there exists a real scalar field x which satisfies

(Viaks—kiaVpX) (Vykg)t 2 =0,

where k, is a principal null vector, ¢t %, =1t°,=0, and r°%,*=1. We obtain some theorems which
provide necessary and sufficient criteria for an SNT to be the twisting type N metric discovered by I.
Hauser, in Phys. Rev. Lett. 33, 1112 (1974). Field equations, a hierarchy of integrability conditions, and
analytic techniques which are applicable to the quest for a new SNT are given. Two tractable SNT

subcases are considered in detail.

1. INTRODUCTION

We let NT denote any type N vacuum solution of the
Einstein field equations such that the principal null rays
are twisting.1 For any given NT, there exists a null
tetrad k, m, t, t* where k is a principal null vector,
and the corresponding connection forms are given by2

dx®*t*V ey =z(A*k + 1) = dE,
dx™ (m® kg + t*PV 1) =0, (1)
dxt**v omg=h di.

z, A, &, and h are complex scalar fields, and k:=dx%F,
and f: =dx®f, are 1-forms, The real part of z is the ex-
pansion and the imaginary part of z is the twist of the
principal null rays.

By a special NT, to be abbreviated SNT, we shall
mean any NT which satisfies the condition® that there
exists a real scalar field x such that

EA(AdE +AXdE*) =k AdY. 2)

The only NT known to date* is an example of an SNT;
this known solution will be designated as NTj.

The general NT problem has been surprisingly re-
sistant to the efforts of numerous investigators. The
authors have, therefore, recently focused their atten-
tion on the problem of finding a new SNT. For reasons
which will become clear in Sec. 2, the SNT field equa-
tions are reasonably amenable to analysis and seem to
offer some chance of discovering a new NT, i,e., if
there exists any SNT other than NT;.

The main objective of this paper is to present the
equations, techniques, and a few theorems which we
have developed in our quest for a new SNT. As
evidenced by the numerous requests for details which
we have received, there is an expanding interest in the
type N twisting problem. It is our hope that the results
of this paper will be useful to the newcomers as well as
to current researchers in the field. We would especially
like to see some involvement by mathematicians who

aResearch supported in part by the National Science Founda-
tion under Grant No, PHY75-08750.
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may not be versed in general relativity but who are
attracted by a curious problem in differential-functional
equations.

The NT field equations which we use have been
derived in a preceding paper by one of the authors
(I.H.).% In Sec. 2, these equations are specialized to
SNT and are expressed in a modified form which is more
suitable for deriving their integrability conditions. A
hierarchy of four integrability conditions is derived in
Sec. 3.

In Sec. 4, we consider the problem of finding those
SNT which have a Killing vector. So far, our efforts
have yielded only NT,, and it is conceivable that NT,
is the only SNT with a Killing vector. The work which
remains to be done to settle this question is explained.

In Sec. 5, we pursue another likely subcase of the
SNT problem, one which does not necessarily involve
the existence of a Killing vector. For this subcase, two
additional integrability conditions are derived.

In the summary of Sec, 6, we review current work in
progress and suggest further lines of inquiry,

2. THE SNT EQUATIONS

As has already been discussed in a preceding paper
by Hauser, %9 the assumption (2) implies the existence
of a coordinate system p, o, ¢, ¢* 5 and of a complex
scalar field Q=Q(¢, ¢*) which does not depend on p and
o such that, for any SNT,

E=pldo + Qds + Q*dt*),
t=(p +iT)dt — A*P,

m=dp— L[p~HDD* + D*D)plk - i(DT - 2AT)dE + f,(Dr(3)
- 2ATY* ALY,
where
p:=Relz"), (4a)
T =Im(z"), {4b)
D: :l%— 586 , (4¢)
pi=exp(-X), (4d)
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A::DX, (49)
A::p"T:*é‘i(DQ* —D*Q). (4f)

The only nonzero null tetrad components of the Riemann
tensor are

MBI R, gy = [0 +iT)p] M )

and its complex conjugate, where we always use the
overhead dot to designate differentiation with respect to
0, as in

. ah

hi= 0"
Except for p itself, all of the scalar fields in the above
expressions are p-independent and ave to be computed
from p, 8, and & by using Eqs. (4d}—(5). The fields
P, ©, and k are to be found by solving a friad of equa-
tions which constitute the cvux of the problem and which
are given, for any SNT, by

AD(A'DP) =~ (b + B)P, (6)
DD*P ~(y/4)P - iAP =0, ()
D*n =0, @)

where we have restricted our chart to a domain in which
A > 0 and where

P::A“zp, (ga)

B:=al?pia-t2 y:=DD*InA, (9b, ¢)

Equation (7) is not completely independent of Eqs. (6)
and (8) in the sense that Eqs. (6) and (8) imply that the
left side of Eq. (7) is independent of ¢, However, this
does not signify that we can ignove Eq. (1) in the
analysis. Equations (6)— (8) were obtained by special-
izing the general NT equations given by Hauser” to SNT,
but we have modified his equations by using P instead
of p as a dependent variable. The basic reason for this
modification derives from a study of the invariance
group of the preceding equations, and we now consider
this group.

There is a residual arbitrariness in the null tetrad
and the coordinate system. Specifically, all of the
preceding equations remain invariant in form under the
following group of transformations? in which F =F(£) is
an arbitrary analytic function of £, g(¢, £*) is an arbi-
trary real C~ function of { and {*, and & is a positive
real scaling parameter:

kK —~kexp(3F +3 F*),

t— (t+ 3F"*Kk) exp(3 F — 3F*),

m = (m - 5 F't— 3F/ ¥ - 1| F7 [} exp( = 3F - 3F*);
£— fdf. expF,

Various scalar fields which we have defined undergo the
following corresponding transformations?:

(10)

p—~p, O—ao+g(g, L),

A— (A~ 3F)exp(-~ F), (11a)
P —~a-l/ip, (11b)
a—~onexp(— F—F*), (11c)
Q- [asz- (g—g) ]exp(—F), (11d)
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h—=[h=iF" +3(F Plexp(-2F), (11e)
B—[B+3F" = H{F')*]exp(- 2F), (11f)
y—~yexp(- F~F¥), (11g)

Observe that, except for a scaling factor, P is an in~
variant, and DP, DD*P, and AD(a"'DP) are tensors
under the group. This is what induced us to use P in-
stead of p as a dependent variable, and this attention
to the tensor character of the terms paid off in great
simplifications of Eq. (7) and of the integrability con-
ditions which will be derived in Sec. 3.

From Eq. (11d), it is clear that g can be chosen, with
o=1and F=0, to transform to a new Q which satisfies
the condition

DX +D*Q =0, (12)

(DQ=232/8L, since 32/30=0.) Then, from Egs. (4f),
(11d), and (12), there exists a real scalar field
=k(t, £*) such that

Q=iDx, A=DD*x; (13)
whereupon the genenl solutionof Eq. (8) is given by
h=hlo~ix, ). (14)

It is the nentness of this geneval solution of Eq. (8) which
especially makes the SNT problem simple tonnalyze
compared with the genewl NT problem. With the con-
straint of Eq. (12), the function g{£, £*) in Eqs. (10)

and (11) is no longer arbitrary; instead, it is given by

£c, %) =55 [10) - F(O*], (15)

where 7(¢) is an arbitrary analytic function of £{. The
transformation law for k¥ corresponding to the group
(10) is given by

K~ ok + S[F(E) + FO)*]. (16)

The arbitrary analytic function F(¢) does not enter into
the transformation of «.

We next show exactly how NT| fits into the above
scheme by proving the following theorem with the aid of
Eqs. (9¢), (11c¢), (11d), (11g), (13), and (15).

Theovem I: An SNT is an NT, if and only if y=0.

The proof proceeds by first noting that NT as given
by Hauser®* is clearly an SNT such that a = constant,
which implies ¥y =0. As regards the converse, consider
any SNT such that y =0. Equation (9c) implies the ex-
istence of a function F(¢) such that A = exp(F, + F*).
Apply the transformation (11c¢) with F=F; and o =1,
whereapon & — 1, and Eqs. (13) imply Q@ =it* + Fy ().
Apply the transformation (11d) with f=¢? + 2/ [ dCF,,
whereupon Q — (¢ +£*). This is precisely the choice of
2 which led to NTy; i.e., any NT with this Q is an
NT,. Q.E.D.

For any given chaice of QUE, £*), we vegard Eqs. (6)
and (1) as a paiv of linear equation in P joy which I
blays a vole analogous to an eigenvalue. The choices of
€2 for which a solution exists and the corresponding %
are to be determined by analyzing the successive in-
tegrability conditions’ for Eqs. (6) and (7) as computed
with the aid of the relation
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We next derive the first four integrability conditions.

3. FOUR INTEGRABILITY CONDITIONS

The manipulations of this section are guided by care-
ful adherence to the tensor character of the various
terms under the group (10), and reference to Egs. (11)
will help the reader to follow the calculations.

Operate on Eq. (7) with D, and apply Egs. (17), (6),
and the identity

DD* - D*D =2iA (_a_) (17)

aD(aly) = - 2D*3. (18)

After some manipulation, we obtain the first integra-
bility condition

3;ADP = (D*8)P = 3yDP + (1 + 8)D*P. (19)

Divide Eq. (19) through by A, and operate with D*, Use
Egs. (6)—(8), (17), and (18). The imaginary part of the
result is a mere identity, but the real part yields a
second integrability condition

AP = Y(DB*)DP + LD*B)D*P

+ [LaD(atiDg*) +Lan*(a-D*p)

-3|n+8|* -4t 1P. (20)
Divide Eq. (19) through by A%, and operate with D. Use
Egs. (6), (7), and (18). We obtain a third condition

2(D*B)DP + {AD[a2 (h + B)}D*P + 4i(h + B)AP
+ [y + )+ JA2D(AD*B) + 3iAR1P = 0. 1)

Divide Eq. (21) through by 4, and operate with D*, Use
Egs. (6)—(8), (18), and (19). In the resulting DP term,
use the identity,

D*(A'ID*ﬁ) — A~1/2(D*2D2A-1/2) - ‘DZA-UZ |2' (22)
We then obtain the fourth condition
[28D%(a7D*p) =4 |h + 8|2 DP+ [3a2D(a72D*B) + iaR|D*P
+2i(D*B)AP +{ = A% + 8)*D[a"2(h + B)] + 2yD*B
_gL(;, + B)DB* + Lap*[aD(a=*D*g)|\P =0. (23)

The general SNT problem is still sufficiently com-
plicated so that it is wise to start with the analysis of
some subcases, and that is precisely what we did and
are still doing. We recall that NT, has a Killing vector.!
The first question which we studied in any detail was
that of the existence of another SNT with a Killing
vector. The techniques which we are using to answer
this question and some partial results which we have
obtained are covered in the next section.

4. PROBLEM OF AN SNT WITH A KILLING VECTOR

Throughout Sec. 4, we assume that a Killing vector
K exists.® It is then convenient to replace the complex
coordinates £, {* by real coordinates’

g:=Re(¥2¢), 7n:=Im{(2%). (24)

In the Appendix, we show that the transformation (10)
can be applied to select the null tetrad and coordinate
system such that there exist a real constant b and real
scalar fields A =X(£), s, and ¢ =¢(s, £) for which the
following relations hold:
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s:=0oexp(-bn), (25a)
k =\(E) exp(bn), (25b)
A=08(E)exp(bn), b:=+(0" +b%N), (25¢)
h=[{s - i\) exp(ibt)], (25d)
p=q(s, £)exp (- bn), (25¢)
1 0 L0 e, 5n O

D:—\TZ—— <EE_Z$7—_ (A —ib\)e 5-(;) R (251)

”‘aia :—aa—ﬁ+ bcrga(—r (Ref, 9). (25g)

Observe that Eq. (25d) is consistent with Egs. (14),
(25a), and (25b). With the commitment to Eqs. (25),
the only remaining arbitrariness in our null tetrad and
coordinate system is given by Egs. (10) and (15) with

F=g+ier f=(0,+iry) exp(-iv2 bi), (26)

where 3, 0y, xy are real parameters, and e=0 or 1.
The Killing vector undergoes the corresponding trans-
formation K —Kexp(- 8 - ien).

The derivation of Egs. (25) and (26) is relegated to
an Appendix to avoid any distraction from our central
task of describing how the integrability conditions are
applied. The only integrability conditions which we need
in this section are Egqs. (19) and (20), The first step is
to use Egs. (6), (7), (9a), (25c), and (25f) to compute
expressions for ADP and A%P gs linear combinations of
DP, D*P, and P, with coefficients which depend at
most on h+5, (h+B)*, 8, 8, v, and the variable

xi=N = bs, 27

These expressions are then substituted for ADP and
AP in Egs. (19) and (20), and the results are expressed
as follows:

vDP ~ (b + A)D*P + (1/V2)[38x 1 (n + A) + v, |P =0, (28)
- (3/2V2 )y DP + v, D*Pl+ (| + AP+ v)P=0, (29)

where
Ar=p+ 30072, (302)
pi= 268~ (6 - 2ibE)r-t + 3, (30b)
V11=_3-53x'3—%ib62x'2 +3yeat - 3p, (0c)
vpi=06(8" +5ibd)xt + 8, (30)
vy: == (Ox) 4+ 3By +9b7) 0%
— 1AD(ATIDBY) = JAD*(ATD*B) + it (30e)

Note that all of the above A, v, v; are polynomials in
x~ with coefficients which depend only on £. In general,
Y is real; g is real if b =0 and complex if b#0.

Equation (28), its complex conjugate, and Eq. (29)
are linear and homogeneous in DP, D*P, P, Therefore,
for a solution to exist, it is necessary that the deter-
minant formed from their coefficients vanish,

%{BGx'i(v2+ 1/5")]}1 +A|2 + @ox- v+ ) i+ A)
+ @0x W+ v (e + A)* + vFud +ouly)
—(r+ A +v)(R+ A2 - [v]H)=0. (31)

In spite of the imposing appearance of the above equa-
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tion, there is a systematic method of attacking it which
offers a good chance of either giving us a new NT solu-
tion or enabling us to prove that the only SNT with a
Killing vector is NTy. The reader can gain a better un-
derstanding of our method by first studying its simpler
applications to the proofs of two theorems. After we
have given and discussed these theorems, we shall re-
turn to Eq. (31) and discuss our current efforts to
analyze the equation,

The first theorem is motivated by a striking feature
of NTy,? viz., for the given  of NT;, Egs. (6) and (7)
have two veal linearly independent solutions P, and P,.
In fact, the only essential parameter of NT; is the
mixing parameter ¢ which occurs in the linear com-
bination P = (cosp )Py + (sinj)P;. The following theorem
provides us with a converse statement pertaining to the
set of all SNT with Killing vectors.

Theovem II: Suppose there exists a choice of z and a
corresponding SNT with a Killing vector such that Eqs.
(6) and (7) have two real linearly independent solutions
for P (i.e., there is exactly one essential parameter in
addition to those occurring in k). Then, =0, and the
SNT is NT;.

The proof starts by observing that the premise of the
theorem implies a rank less than 2 for Eq. (28) and its
complex conjugate regarded as two linear homogeneous
equations in DP, D*P, P, Therefore,

[+ AP = |v|*=0, (32)

v(30x v+ v )* + (Bdx~ v+ v)(h + AY* = 0. (33)

In the rest of the proof, we distinguish between the
cases =0 and #0.

Suppose b=0, Theno=s, k=X, 4 =90, and x =«',
Also, A, v, and v; are real and depend at most on £.
From Eq. (5), % cannot be zero. Therefore, Eq. (33)
implies

35x v+ v =0. (34)

We substitute from Eqs. (30b) and (30c) into the above
Eq. (34) and use Egs. (9b), (9¢), and (25f). Then, upon
replacing £ by x as our independent variable, Eq. (34)
becomes a linear homogeneous differential equation in
A with a solution of the form

A=A0p)+cix™+ox”, (35)

where Ay, ¢4, ¢y are constants, and m and n are simple
irrational numbers whose specific values are of no
importance for the understanding of the general pro-
cedure. The proof continues by applying a key technique
to Eq. (32). Solve Eq. (32) for h*:

B*=— A+ Am+ AL (36)

Then, operate on the above with D and use Eq. (8) and

the relation
V2 Dh=(-2ik")n, if b=0, 37

which follows from Eqs. (25d) and (25f). There results
an equation which can be algebraically solved for /i to
give

2ih =N/ )Y+ AP = v /") + A)+ (N /k’). (38)
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Operate on the above with D*, and use Eq. (37) and the
fact that D*i =3(D*r)/30 =0 for SNT. There results

0= (A /') (n+ AP +2[(A /1" )A

=W/ k') + A) =200 Jok )N + (A /KTY (39)

Since 7 # 0, the coefficients inthe above polynomial in
h+ A must vanish identically. The result is a set of
differential equations which can be solved for A and v
as functions of k, whereupon Eq. (38) can be integrated
to yield h(oc —ix). However, the full solution is not
needed for our present purpose. All we need is the
easily proven statement that constants by, b,, b; exist
such that
A=by and

v=>0, exp(bs«), (40a)

or
(A =0 =12 =b,. (40b)

Next, substitute (32a) and (32b) into the above Eqs. (40),
then substitute in the expression (35) which was pre-
viously obtained for A, and recall that A #0 since the
twist is not zero. One finds that Eq. (40a) leads to a
contradiction, and Eq. (40b) is satisfied by Eq. (35) if
and only if ¢; =¢y=0. In the latter case, ¥y =0, where-
upon Theorem I tells us the SNT is NT.

We next sketch the proof when b #0, Equations (27),
(30b), and (30c) imply

36x'1u+u1¢0

since b5* 0. Solve Eq. (33) for k* and operate on the
resulting expression with D. Then multiply through by
(36x7'v + 1;)? and collect all terms on one side to obtain
an equation of the form X=0. Take note of Eqs. (30)
and the relation

VZD(x ) = - 26572 + ibx”,

which derives from Eqs. (25) and (27), It then becomes
clear that X is a polynomial in x™! of degree 7, and the
coefficient of each power of ™! must vanish since x #0,
1t is sufficient to inspect the x*7 term; its vanishing
implies # =0, which contradicts our original hypothesis.
Hence, when b#0, theve is no SNT which satisfies the
premise of the theovem. Q.E.D.

Theorems I and II are based on two properties of NT,.
Another property of NT; is that its /i satisfies a
quadratic equation of the form 1212+ A(h +1*)+ A, =0
where Ay and A; depend at most on £. The following
theorem is the converse statement for the SNT with a
b =0 Killing vector set.

Theovem III: Consider any given SNT with a Killing
vector such that b =0. Suppose there exist scalar fields
Ay and A; which depend at most on £ such that

[ |*+ Ay +1%) + Ay =0, (41)
Then the SNT is NTy.

A detailed study of Eq. (31) when b =0 and when Eq.
(41) holds reveals that there are only three distinct
possibilities for which the premise of the above theorem
is true:
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(1) Equation (32) is true, whereupon we have the =0
part of Theorem II,

(2) Equation (32) is not true, but v =0, whereupon
Eq. (31) implies 1z + Al%+py,=0.

(3) Equation (32) is not true, and 1, #0, but 36x"1y
+v;=0. Then Eq. (31) implies {h+ Al?+ v,
- (9/2)6x v, =0,

In any case, the proof of Theorem III proceeds along
the same lines as the proof of Theorem II. The steps
differ only in details from those of Egs. (34)— (40).
(For example, the solution of v, =0 has the same form
as the expression for A in Eq. (35). The irrational
numbers m and n are different, but that does not alter
the course of the proof.)

When the premise of Theorem III does not hold, we
are faced with the analysis of Eq. (31). This is a much
more difficult task than the analysis of Eq. (41), but
we have made some progress by using similar tech-
niques. For example, suppose b =0, We first solve
Eq. (31) for

n* :G(h: Ab A2: AS, A4),

where Ay, Ay, A;, A, are simple polynomial expressions
in the functions A, v, v; of £. Then we operate on the
above with D and obtain [see Eq. (37)]
0G G
R P g i P 2

0=-2ik"n o + Aj an, "
We solve the above for % and apply the equality D*h =0.
The result which we obtain is expressible in the form

Py=P(Py)'%,

where P3, Pq, Py are polynomials in % + A of respective
degrees =3, <7, <9, with coefficients which are poly-
nomial expressions in the A; and their first and second
derivatives. Therefore,

P7=P9:0-

Upon equating the coefficients in the above polynomials
to zero, we obtain a host of ordinary differential equa-
tions in the dependent variables A;. Our immediate aim
is to get relations between the functions A, v, v; and to
check these relations against Eqs (30). This is not a
task which can be completed overnight since the differ-
ential equations are severely nonlinear, We have in-
tegrated two of them so far,

In the next section we do not assume that a Killing
vector exists.

5. THE SUBCASED*3=0AND y#0

If a given STN is NT;, then Theorem I and Eq. (18)
implies D*3=0. The converse is not necessarily true,
and we are thus led to consider the possibility that there
exists an SNT for which D*3=0 and v #0. In the re-
mainder of this section, we assume D*3=0 and ¥ #0
unless we explicitly state the contrary.

Since 8 is an analytic function of £ when D*3=0, the
transformation (11f) can be used to make 8 —0 by an
appropriate choice of F(;). However, we have found
that it is wiser to hold this transformation in reserve,
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since we may want to choose F(¢) to achieve simplifica-
tion of another field such as » + 8.

Equations (9c) and (18) imply the existence of a real
constant € such that

y=-€eA if D*B=0, (42)

e#0 if y#0. Therefore, we can always select the scaling
parameter o in Egs. (11) so that e —+ 1, However, we
prefer not to do this now since another numerical value
may suggest itself later.

Equations (9¢), (13), and (42) imply the existence of
g(£) such that

Ina = ek +g(g) +g(&)™.

Therefore, for any given o and F(), we can select £(¢)
in the transformations (11¢) and (16) so that g —~0. Then,

A =exp( - k). (43)

As regards the dependence of A on & and £*, let uy{¢)
and u,(Z) be any given solutions of the equations

uy =Py, wug -l =1, (44)

Then, the general solution of Eg. (9b) is

472
att=c, actu;, (45)

where {c;,} is constant Hermitian matrix such that
det{c;;} = 1.

It is apparent that the integrability conditions {21) and
(23) greatly simplify when D*3=0. That makes it easy
to derive a fifth integrability condition from which P is
completely eliminated. In the derivation, it is convenient
to let

H:=4a%n+p)t, (46)

Divide Eq. (23) through by A?, operate with D*, and
use Egs. (6) and (7). Then, with the help of Eq. (21),
we can eliminate P, DP, and D*P and obtain the new
integrability condition

|DH|? - 4y |H|? = 4ia (HE* — H* ). (47

From Egs. (9c¢), {17), (46), (47), and the equality
D*(h+ 8)=0, one can prove that DH#0, which is a fact
of some relevance in the sequel.

Another useful relation is derived by noting that Eqgs.
(21), (23), and their complex conjugates are linear and
homogeneous in DP, D*P, AP, and P. The condition
that the four by four determinant of their coefficients
vanish yields after a suitable grouping of terms and
factors:

|DH/H| W - 1P ==ty (1 - |W (Y, (48)

where W is an invariant under the group (10) and is de-
fined by

Wi = (3i/4A)(D*H*/DH)H, (49)

Equations (46) to (49) are also applicable when y = 0.
From Eq. (48), W=1 if the SNT is NTy, and it can be
proven that {conversely) W=1 and D*3=0 imply NT,,

The conditions (47) and (48) still have to be fully ex-
ploited, and it remains an open gquestion as to whether
there exists any SNT such that D*3=0 and y# 0. One
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significant point is made by the following theorem which
is the D*B8=0 analog of Theorem II.

Theovem IV: For any given ¥ and & such that an SNT
exists, D*3=0, and y#0, it follows that Eqs. (6) and
(7) have exactly one linearly independent real solution P.

We give only a rough sketch of the proof. Suppose
Egs. (6) and (7) have two linearly independent solutions.
When D*=0, Eq. (23) and its complex conjugate are
linear and homogeneous in DP, D*P, P. The condition
that the rank of these equations be less than 2 yields
two relations involving H, DH, and H. From these rela-
tions, the equation D*(% +$)=0, and Egs. (9¢) and (17),
we can establish a contradiction with Eq. (47) (by the
method used to prove DH #0). The details are left for
the reader.

6. SUMMARY

The working equations to be used in the analysis of
the general SNT problem are Egs. (4c), (6)—(8), (13),
(14), (17), and the equations in Sec. 3. Also, one must
keep in mind the possiblility of using the transformations
given by Egs. (11) to obtain simplifications at appropri-
ate points of the analysis.

There are some worthwhile subjects for investigation
other than the obvious one of searching for a new NT. A
key question concerns the degree of arbitrariness in 7
corresponding to a given 2. For NTy, % is uniquely de-
termined? by the choice of 2. How about other choices
of @7 This question is applicable to any NT, whether or
not it is SNT.

Then there is the problem of generalizing Theorems
II and IV, Can these theorems be extended to the set of
all SNT (without the constraints that a Killing vector
exist or that D*3= 0) or, even better, to the set of all
NT?

As regards the set of SNT with Killing vectors, the
key problem as we have formulated it is to crack Eq.
(31) subject to Eqs. (25) and (30). Of course, there may
not exist any new SNT with a Killing vector, but that
remains to be proven and is a problem in itself,

Then there is the especially interesting subcase of the
set of SNT such that D*3=0, where the key problem as
we have formulated it is to crack Eqs. (47) and (48).
Our own analysis of these equations has already been
initiated, and we expect that other investigators will
want to try their hand, An open question is that of a
suitable relaxation of the ansatz D*3=0; Eqs. (18) and
(21) can be helpful in that venture.

In closing, we stress that there are probably more
elegant and more powerful techniques than any which we
have devised, and it is our sincere hope that the pro-
blem will attract experts on such techniques, including
some who are not currently working on the problem.

APPENDIX

For any SNT with a Killing vector K, we want to show
that we can use the transformations given by Eqgs. (10)
and (11) to select our null tetrad and coordinates so that
Egs. (25) hold. The relevant null tetrad component
forms of the Killing vector structural equations are
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given, e.g., by Collinson. 8 By using these equations,
we can establish that the function F(Z) in the transfor-
mation (10) can be chosen, with o =0 and g=0, to yield
a null tetrad such that

Le=i/V2.
[k:/_m:[t:O,

(A1)
A2)

where [ denotes the Lie devivation with vespect to K.
We grant Eqs. (Al) and (A2), since the prooof does not
differ significantly from similar proofs given by various
people, e.g., Collinson. Then, from Egs. (1), (4), and
(a1),

[p=[T=[A=[h=[d;=0, (A3)
From the relation, *
dAk=kA(AdE + A*dE*) - 2iTdE A dE¥, (Ad4)

and from Egs. (2), (A2), (A3), and the vanishing of
LdAk, we obtain

EAd(Lx)=0

However, we are assuming nonzero twist. Therefore,
the above equation implies d(/x) =0. Therefore, there
exists a real constant b such that

Lx=b.
This is the constant b which occurs in Egs. (25).
From Eqgs. (4) and (A3),
[T={/A - bA)exp(~ x)=0.

However, A =A(g,*) for SNT. Therefore, from Egs.
(A1), (24), and the above equation, there exists &= 5(¢)
such that

A =56(2) exp(bn). (A6)

From Egs. (13), we then obtain the existence of u =u(¢)
and A =X\(£) such that

& =(£) exp(bn) + p (&) + p(2)*,
5=2(" +br).

(A5)

(A7)

We use the transformation (16) to make p =0, where-
upon

k =A(£) exp(bn). (A8)

A careful analysis now reveals that the only residual
freedom in our choice of a null tetrad and coordinates
via Egs. (10) and (11) is, in view of our choices (A1)
and 1 =0, given by

F(&)=V2ct +xy+0, if =0,

F(2) = (kg + ib~1c) exp( - iV202) - 1]

+Ky+0, if b#0, (A9)

F=p+iem, e=0,1,

where ¢, x3, 0y, B are real parameters, and K—Kexp
(~ 8- iem) under the residual group.

From the Eq. (3) for % and the relation /% =0, we
next prove that

d([o-b0)=0.

Therefore,
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[o=bo+a, a=const,

We can show that, under the residual group (for o =8
=€=0) a ~a+c. Therefore, by letting ¢ =~ a we arrive
at

[o=ho. (A10)

From Egs. (A1), (A3), and (A10), we then obtain (25g).
Also, we already have Egs. (25b) and (25¢) via (A6) to
(A8).

The rest of the derivation of Eqs. (25) and (26) is
fairly straightforward and is left for the reader.

IFor a review and bibliography on algebraically special gravi-
tational fields with twisting rays, in the context of a review
of exact solutions, see W. Kinnersley, in General Relativity
and Gravitation, edited by G. Shaviv and J. Rosen (Wiley,
New York, 1975), pp. 109—35.

%1, Hauser, J. Math. Phys. 18, 661 (1978). In this reference,
TNT designated any type N twisting gravitational field. We
are dropping the first T. Our signature is +2, and k-m
=t.t*=1,
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3This condition was discussed in Sec. 4C of Ref. 2. A spe-
cial case of the condition was given in Ref. 4.

4], Hauser, Phys. Rev. Lett, 33, 1112 (1974). Equation (15)
in this article has a typographical error: 1+y° should be in
the denominator. Also, omit the factor 4 on the right side
of Eq. (16). The coordinate notations (u, ¢, p, 0) in this
reference were replaced in Ref, 2 by (p,0,£,7), and A was
interchanged with A*, We follow Ref, 2.

50ur coordinate notations are consistent with those of I,
Robinson and A, Trautman, Phys. Rev. Lett. 4, 431 (1960);
Proc. Roy. Soc. Ser. A 265, 463 (1962).

$This is a special case of a theorem which holds for any NT
and which is proven in Ref. 2.

INT, as given in Ref, 4 was originally derived by computing
the successive integrability conditions of the NT field equa-
tions for the special case Q=#({+ {*). The details of the
original derivation are given in Ref. 2.

8No NT can have more than one Killing vector, as was shown
by C.D. Collinson, J. Phys. A 2, 621 (1969).

f b =0, we can (of course) select a null tetrad #*, m’, ¢,
#* and a coordinate system p’*, ¢*, £’, ¢'* such that K%(8/
ax®)=9/87" where 7' =Im(/ 2 ¢’). However, that would involve
a transformation outside the group (10), and the resulting

Q' would be dependent on ¢’ (i.e., D’ would not commute with
8/3c¢’). There appears to be no advantage in that choice here.

UFor b =0 we have only completed some of the details of the
analysis of Eq. (31).
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This investigation concerns some model potentials with very steep walls, for which the quantal
Bohr-Sommerfeld half-integer quantization condition, if necessary generalized to correspond to modified
phase-integral approximations of arbitrary order, and used without or with higher-order corrections
included, can be used for obtaining, very accurately, the energy eigenvalues of the bound states, apart
possibly from the lowest ones. One of the cases treated is the potential proportional to cot’x, for which a
modified Bohr-Sommerfeld half-integer quantization condition yields the energy eigenvalues exactly.
That the Bohr-Sommerfeld half-integer quantization condition is applicable to potentials with very steep
walls may at first sight seem surprising in view of the well-known fact that the energy eigenvalues of a
square-well potential with infinitely high walls are obtained exactly from the Bohr—Sommerfeld integer
quantization condition, i.e., the quantization condition obtained by replacing (s +1/2)7 by (s +1)m in the
right-hand member of the Bohr-Sommerfeld half-integer quantization condition. From the study of a
potential with horizontal bottom and linearly rising walls, which goes over into a square well when the
inclination of the walls tends to zero, it can easily be understood, why the half-integer quantization
condition is appropriate when the steep walls have a finite slope.

1. INTRODUCTION

The time-independent Schrddinger equation for the
motion of a quantal particle with the energy £ in a one-
dimensional potential V(z) is

2
L@@ u=0, M

where, with obvious notations,
2m
Q2(2)=-,%;27-[E—V(2)]- (2)

The eigenvalue problem of finding the bound states of
this Schrodinger equation can be treated by means of a
method for solving connection problems which has been
developed by the present authors! (cf. also a further ex-
tension by Froman?®), Using this method, we derived in
Ref. 1 an exact quantization condition for the case of

a single-well potential [cf. Eq. (10.20) in Ref. 1]. By
deleting in this exact quantization condition a small
term for which an upper bound was given, one obtains
the Bohr—Sommerfeld (JWKB) half-integer quantization
condition [cf. Eq. (10.22) in Ref. 1]. In Ref. 3 the ex-
tension of the treatment given in Ref. 1 to a new Kkind of
higher-order phase-integral approximation (cf. also
Ref. 3]. One arrives at a further generalization by

tion was generalized correspondingly [cf. Eq. (13) in
Ref. 3)]. One arrives at a further generalization by
modifying the arbitrary-order phase-integral approxi-
mations as described in Ref. 5 and on pp., 126—31 in
Ref. 6. In this way one obtains the exact quantization
condition (7’) in Ref. 7, i.e.,

l 1 F (_oo’z)
2'[q(z)dz_——(s+2)7r+arg—4‘*1—1:“(4_00,2), §=0,1,2,¢-,
3)

where ¢(z) is given by Egs. {12) and (13) in Ref. 5, and
A is the contour shown in Fig. 1(c) of Ref. 7., When E
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is an eigenvalue, the last term in (3) is, according to
Ref. 7, independent of z, which may thus be chosen as
an arbitrary point in the complex z plane. By neglecting
this term in (3) one obtains the Bohr—Sommerfeld kalf-
integey quantization condition, generalized to modified
phase-integral approximations of arbitrary order, [cf.
Eq. (24) in Ref. 7],

ifa@)dz=(s +5)m, $=0,1,2,-0-. (4)

The question of the applicability of this approximate
quantization condition can thus be settled by the evalua-
tion of an upper bound or an approximate expression

for the last term, i.e,, the correction term

arg[F (= =,2)/F(+=,2)], in the exact quantization
condition (3), When the generalized classical turning
points x’ and x”, i.e., the two relevant real zeros of
Q2L.4(z), are well separated, one can obtain an upper
bound which is given by Eq. (15) in Ref. 7. Another
upper bound, which is useful not only when x/ and x” are
well-separated but also when these points lie close to-
gether (whether the bottom of the potential well has ap-
proximately parabolic shape or not), is given by Eq. (18)
in Ref. 7. In addition to those upper bounds for the cor-
rection term in the exact quantization condition (3) one
can derive the approximate formula (23) in Ref, 7 for
this term. In this way one obtains the approximate quan-
tization condition (25) in Ref. 7, which may at first
sight seem to be an essential improvement of the gen-
eralized quantal Bohr—Sommerfeld quantization condi-
tion. However, as remarked in Ref. 7, it seems to be
preferable to use a higher order of the last mentioned
quantization condition, i.e., (4) in the present paper,
instead of using (25) in Ref. 7. In this connection we
remark that, as already mentioned in Ref. 7, condition
(25) in Ref. 7, used in the first-order approximation,

is the same as (4) in the present paper used in the third-
order approximation.

The above-mentioned upper bounds for the errors in
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the quantization conditions in Ref, 7, which are valid
for unmodified as well as modified phase-integral ap-
proximations of arbitrary order, are expressed in
terms of the so called p integral, which is to be per-
formed along paths with certain properties of mono-
tonicity. When the p integral pertaining to the first-
order phase-integral approximation (which is the same
as the first-order JWKB approximation) is small com-
pared to unity, we can in general expect that the p inte-
gral will decrease rapidly with increasing order of the
phase-integral approximations until, at a certain opti-
mal order, the u integral starts increasing. Thus, if
the first-order approximation works satisfactorily, the
first few of the higher-order approximations should in
general yield improved results. In many cases it is
therefore sufficient to restrict the estimation of the
appropriate [ integral to that pertaining to the first-
order approximation.

For a sufficiently smooth single-well potential one
has, as a particular case of (4), when the unmodified
first-order JWKB approximation is used, the approxi-
mate quantal Bohr—Sommerfeld half-infegey quantiza-
tion condition

L@ de =(s +5)m, s=0,1,2,-¢, (5)

where x’ and x” are the classical turning points. For a
square-well potential with infinitely high walls, one
finds instead that the energy eigenvalues are obtained
exactly from the Bohr—Sommerfeld integer quantization
condition

@ dz=(s+1)m, $=0,1,2,¢-0, 6)
As was pointed out in a letter from Prof. G.H. Wannier
to the present authors it is therefore interesting and
important to investigate which quantization condition

one shall use when a continuous potential with very

(but not infinitely) steep walls looks similar to a square-
well potential. For such a potential it seems plausible
that the Bohr—Sommerfeld integer quantization condi-
tion (6) could be used for obtaining at least very rough
approximations of the lowest energy eigenvalues, and
from the results in Refs. 1 and 7 one may expect that the
Bohr—Sommerfeld half-integer quantization condition
(5), possibly modified, or its generalization (4), could
be used for determining approximately the eigenvalues
of the more highly excited bound states.

In the following sections we shall consider some
single-well model potentials with very steep walls, We
shall restrict ourselves to considering the eigenvalues,
but it would also be of interest to calculate quantal ex-
pectation values and matrix elements without the use of
wavefunctions (cf. Refs. 8 and 9) and to investigate the
accuracy of the normalized (cf. Ref. 10) phase-integral
eigenfunctions, especially inside the classically allowed
region,

2. POTENTIAL PROPORTIONAL TO cot?z

In this section we shall consider the eigenvalue prob-
lem for the one-dimensional Schrodinger equation when
the potential is

-2

Viz)= -2%—7 Beot’z, (7

1824 J. Math. Phys., Vol. 19, No. 9, September 1978

where B is a positive constant, and the physical range
of the variable z is 0 <z <7, Introducing instead of the
energy E the quantity A by putting

ﬁZ

we can write (2) as follows,
Q%z)=A - Beot%. (9)

To every given positive value of B there corresponds a
discrete sequence of positive eigenvalues A for which
the wavefunction tends to zero as z tends to +0 and to
1=-0.

The exact solution of the Schrodinger equation in the
case of the cot? potential is considered in problem 12
on pages 2 and 72—4 in Ref. 11. From the treatment
there one realizes that the condition that our differen-
tial equation (1), with @*(z) given by (9), has a solution
¥ which is equal to zero when z =0 and z =7 is

A B -3 [(B+D - 5]=56 +1), 5=0,1,2,0-",
ie,
=[s+i+B+*)P-B
:4'—B+[s+(B DYls + B+ +1],
$=0,1,2,+--,
(10)

Evaluating the integral occurring in the left-hand
member of (5) and (6), with @*(z) given by (9), and usmg
the exact expression (10) for the eigenvalues of 4, w
obtain

1fx Qe) dz
m

xr

=(A+B)/1 =B as+ L+ (B )1 B2

s+4a, for all values of E,

={ s +1+0(E), when B}, (11)

s +3+0(1/VB), when B> 1,

where A =4+ (B+ 1 nirz_pire,

Thus, with s +4, where A =%+ (B +31)/2= B2, in the
right-hand member, the first-order unmodified JWKB-
quantization condition would yield the eigenvalues exact-
ly. We note, however, that the quantity A, here obtained
from known exact results, ig particular for the poten-
tial under consideration, and no definite conclusion

can be drawn as to the existence of such a quantity (in-
dependent of s) and its value for a general steep-wall
potential, See also the discussion in Ref, 7, We further
realize from (11) that for the first-order unimodified
JWKB approximation the integer Bohr—Sommerfeld
quantization condition (8) can be used for all possible
values of the quantum number s when VB <1, whereas
the half-integer Bohr—Sommerfeld quantization condi-
tion (5) (which is used in problem 18b on pages 4 and

78 in Ref. 11) can be used for all possible values of s
when ¥B>>1. When a convenient modification is used,
one can, however, as we shall presently show, obtain
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the eigenvalues more accurately, and even exactly, by
means of the half-integer Bohr-Sommerfeld quantiza-
tion condition.

Let us now treat the eigenvalue problem for the po-
tential well (7) by using the previously mentioned modi-
fied phase-integral approximations of arbitrary order.
According to (9) the function @*(z) is symmetric with
respect to the point z =7/2, and for @%,4(z) we shall
choose a convenient function with the same symmetry,
namely

QLoalz) =a - bcot?z, (12)

where

b=B+} (>1), (13)

and a is a so far arbitrary constant, which is assumed
to differ not too much from A, Because of (13) the
phase-integral approximations are valid also at the
points where cot’z == and thus, in particular, at the
end points z =0 and z =7 of the range of the physical
variable z, The phase of @n.4(z) is chosen to be positive
on the upper lip of a cut along the real axis between the
generalized classical turning points (cf. Fig. 1(b) in
Ref. 7).

When phase-integral approximations of the order
2N +1 are used, and when we integrate along the closed
contour A encircling the generalized classical turning
points x’ and x” (cf. Fig. 1{c) in Ref. 7), we get (cf,
Egs. (8) and (7) in Ref. 10)

équ(z)dzzé R (14)
with
L™ L [ Yy Qmogds =3 [, Z 3 Qmoadz, (15)
where {see Eqs. (9a, b, c) and (6) in Ref. 10]
Zy=1, (16a)
2,2:__%60, (16Db)
R | (16c)
with
o= TE= o) guiae) £ olrer. qaea)

Putting f =- cotz, and denoting by A, the contour in

the ¢ plane which corresponds to the contour A in the

z plane, we can write (15) as follows (note the direction
of integration indicated in Fig. 1{(c) of Ref. 7)

n+ 1 dt
L<2 1):§/ Zanod tZ
Ag

(Res —2—-'-“2"41 +Res J—%H)

t=ef t=af

.

#4 [ Zuta T )
Ay

where A{ is a contour encircling in the negative sense

the part of the real { axis corresponding to the gen-

eralized classically allowed region, as well as the two

points { =+1, which lie outside of the contour A,. Using
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(17), and noting that @u.q 1S approximately equal to
—~itVd for large values of {fi (cf. Fig. 1(b) in Ref. 7)
and that Z,, tends to the Kronecker symbol 8, , as
[t{—~, we easily find that (17) can be written as
follows [cf. (12)],

L = 3a(a + 0 M2y, e + 370 + ) HZ4,),
- 7VD 8,0, (18)
where (a +b)!/? denotes a positive quantity.

To calculate expressions for the quantities (Z,,);- .,
appearing in (18) we need formulas for (€g);-ss [cf.
(16a, b, ¢)]. Since

d{cotz)/dz =— (1 +cot’z) =— (1 +£2) =0 when f =+1,

it follows from (12) that the derivative d’@;L5%/dz? is
equal to zero when {=2=7, From the definition (16d) of
€, and the formulas (9), (12), and (13) we therefore get

- Q2 - szu) _ C
(€odeass = ( @rod t=21 Q+D’ (19)
where

c=A-a-1. (20)

With the aid of (16a, b, c¢) and (19) it follows from
(18) that

L) —af(a 4 1) 2= F ), @1a)
L =ig (a+b)'1/2, (21b)
L == {nct{a + b)-2/2, (21c)

For the first-ovder JWKB approximation, modified
according to (12) with (13), we find from (14), (21a),
(13), and (20), when use is also made of the exact ex-
pression (10) for the eigenvalues of A, that

71;—[ Qmod(z)dZ:(a—{_b)i/Z_\/F

=@ +B-

={s+z+ B+ -

C)I/Q__ (B +}_)1/2
}1/2 1/2

1
=S +E+O( s +w)
(22)
if lcl<s+3%+(B+1)!%, When the first-order JWKB
approximation is modified according to (12) with (13),
the Zalf-integer Bohr-Sommerfeld quantization condition
is thus approximately valid for all possible values of s,
when B is sufficiently large. Furthermore, by compar-
ing (11) and (22), we realize that, for any (even very
small) positive value of B, this quantization condition
is more accurate than the unmodified (half-integer or
integer) Bohr—Sommerfeld quantization conditions (5)
or (6) for sufficiently highly excited states, i,e., for
sufficiently large values of the quantum number s.

Using the modification (12) with (13), we shall now
evaluate the quantization condition (4) in the first-,
third-, and fifth-order approximations. In the first-
order approximation the quantization condition (4) be~
comes [cf. (21a)]

'ﬂ'[(d +b)1/2— \/_b-]:

(s + 5, (23a)
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which, with the use of (13) and (20), yields

A=[s+5+B+D2P <1+[ - B.

s +3 +(B+ )”2]>
(24a)

In the third-order approximation the quantization condi-
tion (4) becomes [cf, (21a,b)]

@ +8)"2 Vb )+ 3mc(a+b)"2=(s +3)m, (23b)
from which, using (13) and (20), we obtain
A=ils +5 + B+

& %[s+2+(B+ /2[5 + 5+ (B+3)/ 2= 20 /2

B

1/ c?
[€+ +(B+ ) 2] [1""0 <[S+;‘+(B+:¥)I/2]4>]—B.
(24b)

In the fifth-order approximation the quantization condi-
tion (4) becomes [cf. (21a, b, c)]

[ (a +p)/2 2 \/3] +imcla+ by - dncta+ b)Y =

(23c)

When l¢1/[s +% + Vb %<1 one can solve (23c) by ex-
pressing (@ +b)!/2/[s +% + Vb | as a power series in
¢/ls +5 +Vb % In this way one obtains

(a+o0 Y [s+5+vD]

1 1. 3
=1~ id - C +O< <
ls+2+VbF [s+i+vb [s+L+vB ]
and hence, with the use of (13) and (20),

3
+(B+3)1/2] [1 +o<[s +;+(CB+§)WZ]6>} -B.
(24c)

Comparing (24a, b, c) and (10}, we see that with in-
creasing order of the modified phase-integral approxi-
mations used [cf, (12) and (13)], the energy eigenvalues
obtained from the quantization condition (4) rapidly
approach the exact eigenvalues, provided that lc|

«<[s +3+(B+3 )1/2] If, in particular, we choose
c=0, i.e., a=A - % [cf. (20)], and hence

Q,g=A -4 -(B+5)cot’z, (25)

we realize that the quantization condition (4) yields the
energy eigenvalues exactly in the first-, third-, and
fifth-order approximations. This result is of particular
interest, since the potential in question appears in con-
nection with the free rotation of diatomic molecules

and the theory of Legendre functions.

A:[S

3. POTENTIAL PROPORTIONAL TO cosh (z/C)

In this section we shall consider the potential

Viz)= fn Bcoshc , (26)

where B and C are positive constants, If one chooses
these constants conveniently, a graphical representa-
tion of the potential V(z) for real values of z looks fair-
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(s +3)m.

B cosh (z/C)

-7 6 -5 -4 -3 -2 A 8] 1 2 3 4 5 6 7

FIG, 1. Graphical representation of the function B cosh(z/C)
for real values of z, when C Arcosh(1/B) is kept fixed and equal
to 2, while C assumes various values. The draft of the figure
was drawn automatically by means of a computer program
written by T. Risch,

ly like a square-well potential with infinitely high walls
(cf. Fig. 1). Writing
r?

= om 4, @7

and inserting (26) and (27) into (2), we get
@%*(z)=A - Bcosh(z/C). (28)

The constant C is simply a scale factor, the constant

B is a measure of the strength of the potential, and the
constant A is to be determined by solving the eigenvalue
problem. Since we are considering a bound state in a
potential well, the function Q%(z) must be positive when
z is real and sufficiently small in absolute value, which,
according to (28), is possible only when A > B, When
this condition is fulfilled, one finds from (28) that the
zeros of the function Q%(z) are located at the points

z2=+1t+270Ci, v=0, £1, £2,0¢, (29)

where

A A 2 1/2
t:Ch’l{E’ +[(§> —1] }. (30)

The classical turning points, i.e., the zeros of Q%(z)
which lie on the real z axis, are thus located at z ==+1¢.

We shall use unmodified phase-integral approxima-~
tions which means that we choose

Ql?nod(z)zQz(Z)- (31)

By means of the definition (16d) of ¢; and Egs. (28) and
(31) we obtain the formula

E()(Z) Q)

(B/A) cosh(z/C)2 +4(B/A) cosh(z/C) - 5(B/A)*
16\/_07[1— (B/A)cosh(z/C)P7?

(32)

For the particular potential under consideration in
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the present section it can be shown that, for the first-
order approximation, the p integral in the estimate
(15) in Ref. 7 is considerably larger than the p integral
for a conveniently chosen path in the estimates (18)
and (23) in Ref. 7. In the following we shall therefore
use only the latter estimates. In these estimates the
point z can be chosen to lie on the straight line Imz
=C7, which from (28) is seen to be an anti-Stokes line
for the first-order phase-integral approximation, and
the path for the p integral, with the correct properties
of monotonicity, can be chosen to be this straight line
except for very large values of |z!| where the path shall
approach the points - © and +« on the real axis. The
value of the y integral along this path is, however, the
same as the value of the y integral along the path
z =x +iCw from x=— to x =+, Since cosh[(x +iCn)/
C]=- cosh{x/C] we therefore find, with the use of
(32), that the u integral corresponding to the first-order
phase-integral approximation and the path described
above is

+0+{ Oy
(=0, + =)= ey (@) Q(z) dz |

~wo+i Cry

-_—f " ’[(B/A)cosh(x/c)]z- 4(B/A) cosh(x/C) - 5(B/A)*
16C°VA[1 + (B/A) cosh(x/C)F7?

=0

x dx. (33)

When B/A «1, we can (for sufficiently small values of
B/A) obtain a very accurate value of the integral (33)

by replacing in the integrand cosh(x/C) by % exp{x/C}.
The result obtained after an elementary, straight-
forward calculation, in which further use of the assump-
tion that B/A <1 is also made, is

5+42v5 0.3 o
30CYA CVA’ ©° 77

The first-order p integral u(— =, + =) appearing in (18)
and (23) in Ref. 7, with a conveniently chosen path of
integration, is thus small compared to unity when
A/B>1 and CVA > 1.

“(_ oo’+oo)z (34)

The smaller the constants B and C are, when
C Arcosh(1/B) is kept fixed, the flatter will the bottom
of the potential well become and the more square-well
shaped the visual picture of the potential. In fact, when
B and C tend to zero in such a way that C Arcosh(1/B)
remains constant, the graphical representation of V(z)
for real values of z approaches a square-well potential
with infinitely high walls located at z =+ C Arcosh(1/B).
For levels lying sufficiently low the energy eigenvalues
can therefore be obtained from the Bohr—Sommerfeld
integer quantization condition (6). (However, the gen-
eralization of the Bohr—Sommerfeld integer quantiza-
tion condition to higher-order phase-integral approxi-
mations can be expected to give erroneous results for
these low-lying levels due to the large values of the
higher derivatives of the potential in the regions in
which the slope of the potential changes rapidly from
almost horizontal to almost vertical, ) In spite of this
fact it follows from (34) that for any positive values of
B and C, however small, the Bohr—Sommerfeld half-
integer quantization condition (5) becomes applicable
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when A is sufficiently large, i.e., when one considers
sufficiently highly excited states. One can expect that,
by using higher-order phase-integral approximations,
one should achieve a strong decrease in the value of the
i integral and hence a corresponding improvement of
the eigenvalue in question obtained by means of the
quantization condition (4).

3,4

In the left-hand member of the quantization condition
(4) the contribution from the first-order approximation,
with Q%) defined by (28) and the classical turning
points z =x1 given by (30), is

L‘“E%fAQ(Z)dz :f_tt [A - Beosh(z/C)]1/? dz

:zfo‘[A-Bcosh(x/C)]“?dx. (35a)
To obtain the corresponding contribution from the third-
order approximation: we use (32}, note that éfA can be
replaced by [*2% 5", make the substitution z =x +iCr,

note that cosh{(x +C)/C]=~ cosh[x/C] and that the
integrand is an even function of x, getting

1 1
ez f L _
L= 2[ zfo(Z)Q(Z)dZ—‘_TIGC W
A

Xf * [(B/A) cosh(x/C)])* - 4(B/A) cosh{x/C) - 5(B/A)? dx.

| 11 + (B/A) cosh{x/C)[7?

(35b)

When B/A is sufficiently small, one can easily calculate
the integrals in (35a) and (35b) very accurately by re-
placing cosh(x/C) in the integrands by 3 expix/C}. After
elementary calculations, in which further use is also
made of the assumption that B/A <<1, one obtains

LW~ 9cVA <1n_8§ - 2) , A>B, (36a)
L(3): __1__.__ A>B (36b)
T12cvg T

It is seen that the value obtained in (34) for the first-
order u integral is only somewhat larger than the abso-
lute value of the third-order contribution L obtained
in (36b). Thus we realize that the p integral in question
yields a realistic upper bound for the error involved

in the first-order Bohr—Sommerfeld half-integer quan-
tization condition.

We shall conclude this section by reporting the re-
sults of some numerical calculations performed some
years ago by A. Nordlund (unpublished) which illustrate
the accuracy obtainable by means of the quantization
condition (4) when various orders of the phase-integral
approximations are used. These calculations were
performed for the parameter values B =1/cosh20
~0.12x10"° and C = (cf. Fig. 1), and the results
are shown in Table I. The exact eigenvalues, also given
in Table I, were calculated by means of a modification
of a program which had originally been written for quite
a different purpose and could not be used for calculat-
ing the eigenvalues for even values of the quantum num-
ber s. This is the reason why the results in Table I
have reference to only odd values of s. Table I shows
clearly the great accuracy of the half-integer Bohr—
Sommerfeld quantization condition [and in particular
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TABLE 1. Eigenvalues A for the Schrédinger equation corresponding to §2(z)=4 — B cosh(z/() with B=1/cosh 20~ 0,12x 107? and

C=0.1 (see Fig. 1).

Approximate eigenvalues A calculated by means of

the quantization condition (4) for various orders
of the phase-integral approximations

Exact eigenvalues A
calculated by a

s 1st order 3rd order 5th order 7th order 9th order numerical method
1 1.4 1,7856 1.93 1.7862
3 6.7 7.03 7.066 7,11 7.21 7.059
5 15,3 15,61 15,627 15,636 15.646 15,632
7 27,0 27,315 27.326 27,3283 27,3301 27.3290
9 41,7 42,004 42,0107 42,0119 42,01236 42,01242
11 59,2 59,576 59,5804 59,58091 59,58108 59.58118
13 79.6 79,954 79.9570 79.95726 79,95734 79,95738
15 102,8 103,076 103, 0783 103.0785 103.0785 103, 0785

its generalization (4) when higher-order phase-integral
approximations are used] for the excited states. As
has been shown in calculations performed by A.
Hokback (unpublished) all figures in the columns cor-
responding to the first- and third-order approxima-
tions in Table I can also be reproduced by approximat-
ing the first- and third-order contributions in the left-
hand member of the quantization condition (4) by the
simple analytical expressions (36a) and (36b), respec-
tively. The values of B and C chosen in the calculations
now described are not small enough that the inieger
Bohr—Sommerfeld quantization condition (6) be valid
for the first few lowest energy levels. One can, how-
ever, achieve this situation by choosing still smaller
values of B and C connected by the relation

C Arcosh(1/B)=2, i.e., B=1/cosh(2/C); cf. Fig. 1,

4. POTENTIAL WITH HORIZONTAL BOTTOM AND
LINEARLY RISING WALLS

It is illuminating to discuss also another example of
a potential with steep walls, namely the potential

72—2
-—— L -
py- B(x +a), when x o,
Vix) = 0, when ~a <x<a, 37
ﬁZ
—_ - <
o B(x — @), when a <x,

where & and 8 are positive constants. Here we write

x instead of z to emphasize that the whole discussion
of this potential will be made on the real axis of the
complex z plane, The potential (37), which is depicted
in Fig. 2, approaches a square-well potential with
infinitely high walls when f~ +«, For the Schridinger
equation corresponding to the potential (37) and the
energy

E=r©2m) (38)

the solution vanishing at x =+« is, when x = @,
proportional to the Airy function Ai(8!/3(x - a — E*/8)).
When —= o <x < a the solution is a linear combination of
the functions sin(kx) and cos(kx). The ratio of the co~
efficients of these functions is obtained by matching at
x =a the logarithmic derivative of the linear combina-
tion to the logarithmic derivative of the Airy function,
By noting that wavefunctions of odd parity are equal

to zero at x =0, while wavefunctions of even parity
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have their derivative equal to zero at x =0, one then
obtains the exact quantization conditions

. Ai(— 2
\y I—ﬁl;(ﬁ% (odd parity), (39a)
tan(ka) =< LA .
?— py %1—((:_—:2)—) (even parity), (39b)
where
y=kgt/3, (40)

If, for fixed energy E, i.e., for fixed k, we let
B—+=, i.e., y— +0, the right-hand members of
(39a,b) tend to +0 and — <, respectively, and the quan-
tization conditions {39a, b) therefore give

2ak=(s+1)m, $=0,1,2,¢s-,

i.e., (39a,b) transform into the Bohr—Sommerfeld
integer quantization condition (6) pertinent to the square-
well potential approached by the potential (37) as
B+

V(x)

I
|
b
|
!
i
l
|
1

|

— X

\
I
I
I
I
I
I
[
-t - -8
FIG, 2, Graphical representation of the potential defined by

(37). The classical turning points corresponding to the energy
E=%’k2/(2m) are denoted by =1,
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If, however, the energy E is not kept fixed as
B— + but is made so large that y>>1, the asymptotic
expression (with only the dominating term retained)
for the Airy function can be used in the quantization
conditions (39a,b), and in this way the Bohr—Sommer-
feld half-integer quantization condition (5) for the po-
tential (37) is obtained.

Thus, if the walls of the potential (37), depicted in
Fig, 2, are very steep, the eigenfunctions pertaining
to the low-lying bound states are very close to zero at
x =+ a, and the quantization condition is approximately
the same as that for a square-well, and hence the
Bohr—Sommerfeld integer quantization condition (6) is
applicable., When the energy increases, the distance
from the point + @ or — a, where the slope of the po-
tential changes discontinuously, to the closest classi-
cal turning point (+? or - ¢, respectively) increases
and finally becomes so large that the appropriate con-
nection formula for the first-order JWKB approxima-
tion of the wavefunction can be used at x =+ . In this
way one easily understands the reason why the half-
integer Bohr—Sommerfeld quantization condition (5)
becomes applicable for sufficiently excited bound states
of the potential (37), however steep the walls may be
(cf. Fig. 2), if only the steepness is finite. In a way one
can therefore say that for the very highly excited states
there is no continuous transition from a potential with
B finite but very large to a potential with $ infinite.
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On phase-integral quantization conditions for bound states
in one-dimensional smooth single-well potentials
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Previous work by the present authors on phase-integral quantization conditions for single-well potentials is
extended and generalized. Exact as well as approximate quantization conditions are considered and
investigated more fully than previously. Not only their necessity but also their sufficiency is treated. An
improvement of the estimate of the error of the generalized quantal Bohr—Sommerfeld quantization

condition is also given.

1. INTRODUCTION

In the first few chapters of a previous publication! the
present authors worked out a general method for handling
connection problems for the first-order JWKB-approxi-
mation and modifications of it. In chapter 10 of Ref. 1
this method was used for proving that certain quantiza-
tion conditions, obtained in exact form, are necessary
for the existence of bound states.

In Ref. 2 N. Froman showed that the sum of the odd-
order terms in the usual JWKB-expansion can be ex-
pressed in terms of the sum of the even-order terms,
and thus she obtained a formal solution of the time-
independent Schridinger equation containing only the
even-order terms. By truncating the sum of the even-
order terms occurring in the amplitude as well as in
the phase of this solution, she then obtained higher-
order phase-integral approximations that, in contrast
to the higher-order JWKB-approximations, can be
handled by the method developed in Ref. 1. The quanti-
zation conditions given in chapter 10 of Ref. 1 are there-
fore valid also for the new type of higher-order phase-
integral approximations. The quantal Bohr—Sommerfeld
quantization condition, with higher-order corrections
included, was given explicitly in Ref. 2, Some general
properties of the above-mentioned higher-order phase-
integral approximations are discussed in another paper
by N. Froman,® The general problem concerning modi-
fications of these higher-order phase-integral approxi-
mations, useful in situations in which the unmodified
approximations would fail or be less convenient than
modified ones, was treated in two papers by the present
authors (see Ref. 4 and pp. 126—31 in Ref. 5).

In the present paper, which is based on the use of
these phase-integral approximations of arbitrary order,
we present an extension of the above-mentioned results
on the bound-state problem, We shall thus assume that
q(z) is defined as in Ref. 4 [cf. Eqgs. (12), (13), (7),

(3), (4a) in Ref, 4]. This function ¢(z) is approximately
equal to Q.4(2) except in the neighborhood of the zeros
of Q% 4(z). At those points the function ¢(z) has singu-
larities, and in the neighborhood of each such singularity
q{z) has a certain number of zeros {cf. Ref, 3). Since
we shall consider an ordinary quantal bound-state prob-
lem, the functions @*(z) and Q% 4(z) are assumed to be
real on the real axis. We shall frequently refer to
equations in Ref. 1, assuming, however, that g(z) is
defined as stated above. To make the paper more easily
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readable we have therefore in an Appendix collected
those formulas from Ref. 1 which we refer to. It is
important to note that for the validity of the treatment
given in chapter 10 of Ref. 1 it is sufficient to assume
that the functions ¢(z) and @(z) are similar in shape
except in certain regions in the neighborhood of the gen-
eralized classical turning points (i.e., the zeros of
Qfmd on the real axis) or possibly existing singularities
of @*(z), where the two functions g(z) and @(z) differ
considerably. The phase of the function ¢'/%(z) is chosen
such that sufficiently far away from the generalized
classical turning points the values of ¢'/%(z) on the dif-
ferent parts of the real axis are those indicated in Fig,
10.1() of Ref. 1 [cf. our Fig. 1(b)]. For the single-well
potential under consideration and real values x of z, the
function #(x) is given by Egs. (11a,b,c) in Ref. 2 with
the contours of integration depicted in Fig. 1 of the pres-
ent paper. As a consequence, the integral [%. |g(x)ldx,
occurring in the formulas in chapter 10 of Ref. 1, shall
be replaced by %f,\q(z)dz, where A is the contour de-
picted in Fig. 1 of the present paper. When these
changes are assumed to have been made, the equations
in Ref, 1, to which we shall refer, become valid for

the modified phase-integral approximations of arbitrary
order used in the present paper. As in chapter 10 of
Ref. 1 the eigenvalue problem is formulated for the
interval (= e, + =), buf the treatment applies also to
other ranges of the physical variable z. Thus, to treat
a radial problem we simply replace -~ « by +0 in our
formulas.

In passing we remark that from (10, 8a,b) in Ref, 1 it
follows that, to a given value of E there corresponds at
the most one eigenfunction (except for an arbitrary con-
stant factor). This is in accordance with the well-known
fact that one-dimensional potentials with certain proper-
ties of regularity have nondegenerate bound states.

The present paper provides a deeper treatment of what
is discussed in Ref. 1 from the middle of p. 106 to the
end of chapter 10.

2. THE EXACT QUANTIZATION CONDITION
Fiy (-0, +00) =0

Up to the middle of p. 106 in Ref. 1 it has been
shown that the condition (10.13) in Ref. 1, i.e,,

Fiz(—°°y+°°)=0, (1)

is necessary for the existence of a bound state. (Of the
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FIG. 1. (a) For the case of a bound state in a general single-
well potential the figure shows the qualitative behavior of
Vioa®) —E, where V,4(x), called the modified potential, is
related to Q%,4(x) according to the formula Q% ,(x)= @m/#%)(E
— Vioa'®)]. (b), (c) Contours of integration on the Riemann sur-
face to be used for obtaining w(x). The parts of these contours
which lie on the second Riemann sheet are indicated by dashed

lines. The phase of @L/3(x) to the right of »** on the real axis

of the first Riemann sheet is indicated. The heavy line indi-
cates a cut, (d), (e) The path of integration in the complex z
plane for the p integral in the estimates (15) and (18), respec-
tively. The arrows indicate the directions in which

| explif?g(z)dz]| increases (in the nonstrict sense).

two proofs given in Ref. 1, the one given immediately
below Eq. (10.13) in Ref. 1 is to be preferred.)

We shall now show that the above quantization condi-
tion (1) is also sufficient. Let us therefore suppose that
this condition is fulfilled for a certain value E of the
energy, and let us select a special solution ¥(z) of the
Schrédinger equation for which a;(+ ) =0 but a,(+ <)

# 0. For this special solution the formulas (10, 8a,b) in
Ref. 1 are valid. Since the condition (1) above is
assumed to be fulfilled, it follows from (10, 8a) in Ref. 1
that a;(— ) =0. As a consequence of this it follows,
according to pp. 104—105 in Ref, 1, that the limit

ay(~ ) exists and is finite and that a,(z) and a,(z) are
also given by formulas which one obtains by replacing

+ 0 by = in (10.8a,b) in Ref. 1. Obviously ay(~ «)#0,
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for otherwise the solution #(z) would be identically
equal to zero, in contradiction to the definition of this
function. In the same way as on p. 105 in Ref. 1 we now
obtain (10, 12) in Ref. 1 and the corresponding formula
with a,(+«=) replaced by a,(— «). From these two for-
mulas it follows that for the special solution ¢(z) con-
sidered, the integral [*=|y(x)|®dx is finite, provided
that the integrals [_.|f,(x){2dx and [*“|f,(x)1%*dx are
both convergent, Thus ¥(z) is the wavefunction of a
bound state, and we have proved that (10.13) in Ref. 1,
i.e,, (1) above, is also a sufficient condition for the
existence of a bound state.

Let us note that if the modified phase-integral func-
tions of arbitrary order defined by Egs. (11la,b), (12),
(13) in Ref. 4 were exact solutions of the Schrodinger
equation (cf, pp. 11 and 110—112 in Ref. 1), the guan-
tities € and u defined by Egs. (18) and (19) in Ref. 5
would be identically zero, and the matrix F(z,z,) would
be exactly a unit matrix for all values of z and z,, and
in particular we would have Fj,(~ =, + =) =0, Since this
relation would be true for all values of E, the quantiza~
tion condition (1) would be void of any information, This
situation, however, cannot arise for the kind of problem
which we are considering, for if F,(—«, +=) were equal
to zero for every value of E, the boundary condition that
a;(+ =) =0 and a,(+<)# 0 would imply that also a,(— =)
=0 and a,(— ©)# 0, and hence that bound states would
exist for all values of E, which is impossible for the
eigenvalue problem under consideration. Thus the
quantity ¢, defined by Eq. (18) in Ref. 5, cannot be
identically equal to zero in a bound-state problem, when
@%,.4(2) is chosen appropriately so that the corresponding
modified potential has the properties shown in Fig. 1(a)
of the present paper, which means that ¢(z) has the
properties shown in Fig. 10,1 of Ref. 1 with the altera-
tion that for phase-integral approximations of higher
order the function ¢(z) has not simple zeros but higher-
order poles at the generalized classical turning points
x’ and x’/, which by definition are the real zeros of

Qﬁ\od(z)-

Letting z be an arbitrary point in the region of the
complex z plane under consideration, we obtain, because
of the multiplication rule (3.27) in Ref. 1, the identity

FIZ(_ oo, + °°)

=F1(=2,2)F,(g, + )+ Fy(= ©,2)Fylz, + =), (2)

which by means of the inversion formula (3.20) in Ref, 1
can be written

F (=0, + =)
==Fyi{=2,2)Fy(+°,2) + Fiy(~ ©,z)Fy;(+,2). (3)

The quantities appearing in this identity exist and are
finite according to (4.5a,b) in Ref. 1.

By means of the identity (3) the necessary and suffi-
cient condition (1) for the existence of a bound state can
be written [cf. p. 106, line 8 from above in Ref. 1
together with the inversion formula (3.20) in Ref. 1]

Fu&— 0032) _-F]z(" °°,Z)
] - 00 . (4)

F(+2,2) 7 Fpy(+=,2)
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This quantization condition can also be obtained from the
formulas [cf. pp. 105—106 in Ref. 1 and the discussion
below (1) in the present paper]

Fia(z, = ©)ay(= ©) =a,(z)

=Fy(z, + ©)ay(+ =),
Foy(z, = ©)ay(— ©) =a,(z)

=Fy,(z, +®)a,(+ =),

and the inversion formula (3.20) in Ref. 1.

3. THE GENERALIZED QUANTAL BOHR-
SOMMERFELD QUANTIZATION CONDITION
AND CLOSELY RELATED QUANTIZATION
CONDITIONS

Let x; be a point on the real axis in the classically
allowed region, lying far enough from the generalized
classical turning points x’ and x” to be outside the
regions around those points in which there are zeros of
G(z), when higher-order phase-integral approximations
are used, With the phase of Q,‘n/oﬁ(x) chosen as shown in
Fig., 1(b) in the present paper (cf. Fig. 10, 1(b) in Ref.
1, we then get from (5.9a) in Ref, 1 the symmetry
relations

Fa(= 0, x¢)

=i exp[2Imw(x,) = 2i Rew(- <) JFf (- =, x,), (5a)
F (4, %)

=~ 4 exp[2Imew(xy) = 21 Retw(+ <) [F¥ (+ 0, x4), (5b)

which are valid irrespective of the choice of the lower
limit in the integral (3.3) in Ref, 1 defining w(z). If,

for instance, this choice is made such as to correspond
to x’ being the lower limit in the integral when the first-
order phase-integral approximation is used, the formu-
las (5a, b) become the same as (30a,b) in Ref. 6. Sub-
stituting (5a,b) into (3) with z chosen equal to x,, we get
the identity

F12(- ©, + °°) :lF?(l(— o, xO)F11(+ °°,X0)

X exp| 2Imuw (xy) — 24 Rew (= «)]
Fiy(==,x) [(Fyi(=2,x\*
8 {1+[F“(+°°,xo)/(F“(+°°,x0)> ]

X exp{~ 2i[Rew(+ <) = Rew(— ”)]}}

which, by the use of Eq. (3.3) in Ref. 1, defining w(z),
and the fact that the analytical function g(z) is real in the
interval (x’,x"”) of the real axis, can be written as
follows {cf. Eq. (31) in Ref. 6],

Fig(= =, +)
=iFY (=, %)F 1(+ *, %))
X exp(2Imw (xy) - 2iR ew(— <))
X {1 — exp [— 2 (% qu(z)dz -7
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e File w,xg))]}
AL T (T, xy) ) (6)
where A is the contour defined in Fig. 1{(c) in the pres-
ent paper. We emphasize that (6) is an identity, which is
valid for every possible value of E provided that x; is
located on the real axis between the points x’ and x”,
and that the phase of Q,‘,,{,ﬁ(x) is chosen as described
above. Inserting this identity into the quantization con-
dition (1), and noting that F, (~ ©, x;) and Fy,(+ =, x;) are
different from zero, as is seen from the estimate
(6.13a) in Ref, 1, valid when the appropriate p integrals
are small compared to unity, we get

F“(_ oo’xl)

Fyy(+2,x9)° "

3 [ ak)dz =(s +3)m +arg
where s is an integer which, because of the positive na-
ture of Q.4(x) in the classically allowed region of the
real axis and the smallness of arg(F, (= =, x,)/
Fi(+%=,x,)], cannot assume negative values. Since the
quantization condition (1) is both necessary and suffi-
cient, so also is the quantization condition (7), as is
obvious from the derivation of it given above. Special-
izing (7) to the first-order phase-integral approxima-
tion, we obtain, because of the inversion formula (3. 20)
in Ref, 1, the quantization condition (10, 20) in Ref. 1
with z =x,

From (3.18), (3.13), and (3.3) in Ref. 1 it follows
that

%F(z,zo)=%i6(Z)q(2)

1 expl— 2iw(z)]
X F(Z’ZO)'
- exp[2iw(z)] -1 @)

Using this formula and the formulas (3.20) and (3.27)
in Ref, 1, and recalling also (4.5a,b) in Ref. 1, we ob-
tain the identities

ie(z) g(z) expl2iw (z)]
FFH (+ OO)Z)T[

_a_ Ell(_ OO)Z)

3% Fyy(+w,2) (92)

Flz(—.oo, +0)

and

3 Fp(=%,z) 3ie(z)q(z) expl- 2iw(z)]
0z F12(+°°,Z)— [F12(+°°,Zﬂ2

Fiy(=o0,+=), (9b)

Since it can be assumed that €(z) is not identically equal
to zero (cf. Sec. 2 of the present paper), it follows from
{9a) that if, and only if, the quantization condition (1) is
fulfilled, we have

_Q_Eu(_'i’_ﬁzo

0z Fy(+%,2) (10)

for every value of z. The validity of (10) is therefore,
like condition (1), a necessary and sufficient quantiza-
tion condition. Since this quantization condition means
that the quotient Fy (— <,2)/Fy(+%,z) is independent of
z, we can, letting z — + [cf. (4.5a) in Ref. 1], write it
as

F (_oo Z) A

0 S Lt L8 -, +20), 2z arbit 11a

F(7.2) Fiy{= 0, +0), rbitrary, (11a)
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or, inverting the quotient and letting 2 = - =, as

F“(+oo,z) :F11(+ 0, - oo), z arbitrarye

Frl—w.2) (11b)

The quantization conditions (11a) and (11b), which have
here been obtained as both necessary and sufficient
quantization conditions, are seen to agree with the quan-
tization conditions (10. 14b) and (10. 14a), respectively,
in Ref. 1, when use is made of the inversion formula
(3.20) in Ref. 1. In Ref. 1 we proved only the necessity
of these quantization conditions.

According to (10.17b) in Ref. 1 we have a symmetry
relation stating that

Fyl=, +=) explil} [, ale)dz - 37} is real. (12)
Using (3. 20) in Ref.- 1, we can write (12} as
2 a@)de =(s +3)7 - argF(+ 2, = =), (12’)

where s is an unspecified integer. Combining this sym-
metry relation with the quantization condition (11b), we
obtain the necessary and sufficient quantization condition
fef. (10.20) in Ref. 1 and {(13) in Ref. 2]

1 (s +% Fyyl=,2)
2‘/q(z)dz_(s +2)7r+argF“(+w,z),
A

5§=0,1,2,+-., (1)

where z is any point in the complex plane., The reason
why s in (7’) is restricted to nonnegative integers is that
Qumoglx) is positive in the classically allowed region and
that | arg[F, (= =,2)/F, (+%,2)]l «1. We remark that
one can also derive the quantization condition (7’) by
combining the quantization conditions (7) and (10). We
emphasize that (12’) is a symmetry relation, i.e,, an
identity valid for any value of E, while (7) and (7’) are
quantization conditions, by means of which the energy
eigenvalues can be determined.

Excluding for a moment cases in which the generalized
classical turning points x’ and x” lie close together, we
shall estimate the last term in (7}, i.e., the last term
in (7’) with the point z chosen as a point x, on the real
axis between x’ and x” (cf. Fig. 1). Since the points ¥’
and x" are well separated, there exist paths from x,
to £ =, proceeding as shown in Figs. 6.1(b) and 6.2(b)
in Ref. 1, for which u(+«,x,) «1, where in our present
treatment u is defined by Eqs. (19), (18), and (16) in
Ref. 5. As has been mentioned in chapter 3 of Ref. 1,
the diagonal elements of the F matrix do not depend
on the choice of the fixed lower limit in the integral
(3.3) in Ref. 1 defining w(z). Independently of how this
lower limit of integration has been chosen, we can
therefore use the estimate (6.13a) in Ref. 1, general-
ized to the modified phase-integral approximations of
arbitrary order (cf. Ref. 4 and pp. 126—31 in Ref. 5),
i.e. (cf. p. 107 in Ref. 1),

[Fyg(2 o0, x6) = 1] < (% 0, xp)

(13)
where x’ <xy<x”, and u(+ «,x,) denotes the p integral
[cf. Egs. (19), (18), and (16) in Ref. 5] from x, to

+ « along such a path as is shown in our Fig. 1(d) [cf.

also Figs. 6.1(b) and 6.2(b) in Ref. 1]. From (13) it
follows that

+higher powers of p (%, x,),
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F“(_oo’x!) 1

- = ~ 0, + o
Foy(+ o, x,) o )
+ higher powers of p (=, + ) (14)
and hence
Fii(=,x,)
il VRS Ead 1LY VIS
argF“(+°o,x0) M( °°;+°°)
+ higher powers of y (= ©, +%), (15)

where [t (= ©, +©) denotes the y integral from - = to

+ along a path, the two parts of which, namely those
from - = to x;, and from x, to + < possess the properties
of monotonicity described in Sec. 6.3 of Ref. 1, For this
u integral the integration is thus to be performed along
a path in the complex z plane proceeding as shown in
Fig. 1(d) of the present paper. The radii of the two
semicircles in this figure shall be chosen such that
lexplif*q(z)dz]| has precisely two minima on the path
of integration from — = to + [cf. Fig, 1{(b) in the
present paper].

If the generalized classical turning points x’ and x”
are not well separated, which is the case for the lowest
energy eigenstates, we cannot expect the quantity
[(=o0, + ), occurring in the right-hand members of (14)
and (15), to be very small. Therefore, we shall now
also derive another estimate for the correction term in
the exact quantization condition (7'), which is useful
both when x” and x” are well separated and when those
points lie close together, whether the bottom of the po-
tential well has an approximately parabolic shape or not.
We shall thus estimate, and even approximately calcu-
late, the last term in (7’) by choosing the point z appear-
ing there in a different way than in the previous esti-
mate, i.e., (15). Considering, for the actual single-
well potential, the picture of the Stokes’ and anti-
Stokes’ lines corresponding to the first-order approxi-
mation (cf, Fig. 1 in Ref. 7), and recalling that far
away from x’ and x” these Stokes’ and anti-Stokes’ lines
are almost the same as those corresponding to higher-
order phase-integral approximations, we realize that
for a single-well potential we can always, for any con-
veniently chosen order of approximation, choose z such
that there exists a path from z to — © as well as a path
from z to + along which lexp[if*q(z)dz]i increases
monotonically in the direction from z to £« as shown
by the arrows in Fig. 1(e). We can therefore use the
basic estimate (4. 3a) in Ref. 1 with M =1, generalized
to modified phase-integral approximations of arbitrary
order (cf. Ref. 4 and pp. 126—31 in Ref. 5), getting

IF“(:tw,Z)— 1 |€§{exp[u(i°0,z)]— 1};

where u{x »,z)} denotes the u integral along the path
of monotonicity from z to + « {cf. Fig. 1(e)]. When
p(x ,2)<<1 it easily follows from (16) that

(18)

F]](— oo’z) -1
Fii(+,2)

< %“’(" 2, +oo)

+higher powers of p(- =, +) 1)

and hence

Fiy(=0,z)
3
argFu(+°°,z)
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+ higher powers of j(— o, + ), (18)

where p(~ ©, +=) now denotes the y integral along a
path [cf. Fig. 1(e)] from -« via z to +*=, on which
lexp{i[*q(z)dz}| has a single minimum [at the point z
appearing in the last term of (7).

In the same manner as (15), formula (18) gives only
an upper bound for the correction term in the exact
quantization condition [(7) or (7)]. We can, however,
make the derivation of (18) somewhat more sophisticated
such that we obtain not only an upper bound but an
approximate formula for the quantity in question, In
fact, modifying the derivation of (16) slightly by also
taking explicitly into account the second term in the
series defining Fy,(+ =,z) (cf, pp..18, 26, and 27 in
Ref. 1), we obtain

[Fyy(20,2) = 1= 4i [ e(2) qe) dz |
< zlexplp(z ©,2)] - 1= p(zw=,z)}
=3lp(x=,2)p
+higher powers of yi(x*,z). (19)

From this formula and the definition of the y integral
[cf. Eq. (19) in Ref. 5] it follows that

Fiy(==,2) o 1. ("
Fulr=,2) —1—21f elz)gz) dz
+O0[p¥(= 0, + )] (20)
and hence

F11("°°,Z)_— ¢ml
argF“(-F °°,z) - Ref ZG(Z)Q(z)dz

+O[“2(_ °°a+°°)]; (21)

where u(- =, +«<) is the same p integral as in the esti~
mates (17) and (18) [cf. Fig. 1(e)], and the symbol
0(u?) is used to denote a quantity which is at the most
of the order of magnitude of u?, Since @*(z) and @%.4(2)
are assumed to be real on the real axis, it follows from
Eq. (3) in Ref. 4 that ¢)(z) is real on the real axis, and
from Eq. (7) in Ref. 4, with Y,=1, and Eq. (4a) in Ref,
4 it then follows that the quantities Y,, are real on the
real axis, From Egs. (16) and (18) in Ref. 5 one can
then conclude that ¢{2)/@n.4(2) and e(z) are real on the
real axis, These functions are analytic functions which,
in the region of the complex z plane under considera-
tion, have singularities only at the zeros of Q% .(2), if
a convenient modification is used. Since the complex

z plane is assumed to be cut as in our Fig. 1, we now
realize that

Rejj:%eqdz =§fA§eq dz, (22)

where A is the contour shown in Fig, 1(c). Formula
(21) can therefore be written as follows,

Fy(=»,2z) 1[1
arg—2"2 =~ | Ze(z)q(2)dz
B (=2~ "2, ®)q(

+0[pl(= =, +)]. (23)
On the right-hand side of (23) the last term may be ex-

pected to be of the order of magnitude of the square of
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the first term, unless large cancellations occur in the
integral.

From the exact quantization condition (7) and the
estimate (15), as well as from the exact quantization
condition (7’) and the estimate (18), we obtain, if
p(~°, +=)<«<1, the approximate quantization condition

3f,a@)de=(s + D), (24)

where s is a nonnegative integer. The correction

term, which has been deleted in obtaining the approxi-
mate quantization condition (24) from the exact quanti-
zation condition (7) or (7’), can be expected to be very
small for high energy levels, i.e., when x” and x” are
well separated [since the u integrals in the estimates
(15) and (18) are then very small compared to unity], It
can also be expected to be small for low-lying energy
levels, i.e., when x’ and x” are not well separated,
especially if the bottom of the potential well has approxi-
mately parabolic shape [since the y integral in the
estimate (18) is then very small compared to untiy due
to the absence of zeros or singularities of @%,q(z) in

the relevant region of the complex z plane]. If the po-
tential is not only approximately but exactly parabolic
in shape (linear harmonic oscillator), with the minimum
at x=0, we may choose the unmodified expression for
the function ¢(z) appearing in the phase-integral approx-
imations of arbitrary order, and we may choose the
particular point z in our Fig. 1(e) as z =+iR, where R
is a positive number larger than x” (=-x'). When

R — e, the yu integral corresponding to the first~order
as well as to higher-order approximations for the

path shown in our Fig. 1(e) then tends to zero. Hence
the estimate (18) gives arg[F(- =, +i©)/F(+%©, +)]
=0, Therefore, the last term on the right-hand side of
(7’) is exactly equal to zero, and hence we have rigor -
ously proved the well-known fact that one obtains the
exact values of the energy levels of a harmonic oscil-
lator from the quantization condition (24) already in the
first-order approximation, the higher-order terms
yielding no contributions, if ¢(z) is chosen to corre-
spond to unmodified phase-integral approximations. A
corresponding proof resiricted to the first-order ap-
proximation was given on p. 109 in Ref. 1,

When unmodified phase-integral approximations are
used, i.e., when @u.4(z)=@Q(), the quantization condi-
tion (24) is the same as the generalized quantal Bohr—
Sommerfeld quantization condition which was used by
Dunham?®? in his treatment of the energy levels of
diatomic molecules. The application of this unmodified
quantization condition to such radial problems has been
criticized and also remedied by Krieger and Rosen-
zweigl® (cf. also a paper by Howard!'!). By using, in (24),
modified phase-integral approximations obtained by
choosing @%,,2)=Q%z) ~ 1/(42?%), we get directly and in
explicit form a quantization condition which is equivalent
to the final result of the above-mentioned procedure de-
vised by Krieger and Rosenzweig to correct Dunham’s
treatment of the energy levels of diatomic molecules.
When the interatomic potential is more singular than
the centrifugal barrier at small interatomic distances,
the unmodified phase-integral approximations can also
be used, and Dunham’s approach®? is then justified.
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Using (23), we obtain from (7’) the approximate
quantization condition

i [ a)dz=(s +5) =3 [, 3e(z)q(e)dz, $=0,1,2,°°c,

(25)

where the error can be expected to be of the order of
magnitude of the square of the last integral in (25), if
large cancellations do not occur in this integral. At
first sight one might think that (25) represents an essen-
tial improvement of (24), but actually this does not
seem to be the case, since, instead of applying (25) in
a certain order of approximation, it should in general
be preferable to apply (24) in a higher order. In this
connection we remark that (25) in the first-order
approximation is obtained from (24) in the third-order
approximation simply by moving the third-order con-
tribution from the left-hand to the right-hand member.
For approximations of higher order than the third in
(24), the connection between (24) and (25) is, however,
more complicated.

The discussion below (25) indicates that the attempts,
sometimes met with in the literature, to replace the
first-order JWKB-quantization condition for a single-
well potential by a condition of the type

f:'Q(x)dx=(s +A)7, §=0,1,2,-++, with A#3%,

seem to be of limited value and rather unnatural within
our present framework, in which the use of higher-order
phase-integral approximations, consistently modified
if necessary, is in general the most convenient way of
increasing the accuracy. We shall now elucidate our
point of view somewhat further. Consider for this sake
a radial Schrodinger equation
2

24 QU v=0, (26)
and let us assume that there exists a simple path A’
as shown in Fig. 2(b), emerging from +«, encircling
the classical turning points and the origin, and return-
ing to +e, on which Q*@z) and Q%,,(z) are approximate-
ly constant. (Note that in the complex z plane there is
no need for any cut crossing A’, but inside A’ there is
at least one cut, namely between the points x’ and x”,)
With the phase of @u.q(z) chosen as indicated in Fig.
2(b), the quantity lexp[—iw(z)]! is zero at +« and in-
creases monotonically when z moves on the path A/,
either in the lower or in the upper half of the complex
2z plane, from + <« to the point where A’ crosses the
negative real axis. Therefore, a solution of (26) which
tends to zero as 2 — +« can, except for an arbitrary
constant factor, be represented by the phase-integral
function ¢~'/%(z) exp{- iw(z)] on the part of the path A’
lying in the lower half of the complex z plane as well as
on the part of A’ lying in the upper half of the complex
z plane. In general the solution thus represented by the
same phase-integral function on the whole path A’ is
not single-valued. If, however, the path A’ encircles
no singularities of @%(z), except possibly for a pole at
the origin of at the most the second order, and if we
have the situation of a bound state, the corresponding
solution of (26) is single-valued on the path A’, Since

wk)= ["qz)dz
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FIG. 2. (a) Qualitative behavior of V, 4(x)— E for the case of a
bound state in a hydrogenlike ion. (b) Contours of integration
in the complex z plane used in the quantization conditions (27),
(28), and (33). The heavy line indicates a cut. The phase of
QL/%(x} is indicated for large positive values of x.

the single-valuedness of the bound-state solution repre-
sented by the previously mentioned phase-integral func-
tion on the whole path A’ then implies that (cf. Ref. 12)

éfA, q(2)dz = integer multiple of . @7
From the derivation of this quantization condition one
immediately realizes that if one can choose the path

A’ such that the relative error of the phase-integral
expression ¢-'/%(z) exp[~ iw(z)] for the bound-state
wavefunction on A’ can be made arbitrarily small, the
quantization condition (27) is exact. Assuming now

g(z) to be single-valued at the origin [which excludes
the case that Q%.4(z) has a first-order pole at z =0],

we can by means of residue calculus replace the origi-
nal path of integration A’ by another path A, as depicted
in Fig. 2(b), which encircles the generalized classical
turning points but not the origin. Thus one easily finds
that the quantization condition (27) can be written

% .,[ q(z)dz = (integer - szos 2_(13_)> T, (28)

where the path of integration A is encircled in the
negative sense. Let us now restrict the above treatment
to a hydrogenlike ion for which
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Ze? +1)

2
205 Le ) D
@ (Z)__'ﬂz (E + 2 ) P (29)
with well-known notations. We choose
2m Zet al
2 . £ 0\
Qmod(z) - ﬁ2 <E + z > 22 3y (30)

where o is a constant, which is assumed to be different
from zero [in order that ¢(z) be single-valued at the
origin] but otherwise arbitrary. The conditions for the
validity of (27) and (28) are then fulfilled. Since we can
choose the contour A’ arbitrarily large, so that the
error of the phase-integral expression q'”z(z)

X exp[— i (z)] for the bound-state wavefunction on A’
can be made arbitrarily small, (27) and (28) are exact
quantization conditions. The function Q%.a(z) has only
two zeros (the generalized classical turning points) and
one singularity (the second-order pole at the origin).
Inserting (29) and (30) into the definition of ¢, [ef. Eq.
(11’) in Ref. 5], we get

(€0)e-o = ((1 +2)2 = @?)/a?,

Using this formula and Egs. (9a,b,c) in Ref. 2 and
Eqgs. (14’) and (16) in Ref. 5, and noting that close to
the origin @mealz)=ia/z ++--, if @ is chosen to be
positive, we get

(31)

{first-
@ order) (32a)
1 N (third-
o) a+2&((l+2) -a?), order) (32b)
B 1
= a+5- (U +3)2—-a?)
1 iy gy (fifth-
~ g (0 +2)-a ). order) (32¢)

Inserting (32) into (28), and denoting the integer in (28)
by s +1+[a], where s is a new integer, and [a] is the
integer part of ¢, we get the exact quantization condition

i [ az)dz=(s +8) 7, (33)
where
(of+1-a, oreen  0%)
N @] +1-a - (@ +1-an, S o)
o] +1- 0= 5= (1 +4)~a?)
sebr@aproar. B e

This result shows that the choice a =1+ 3 gives the
half-integer quantal Bohr—Sommerfeld quantization
condition independently of the order of the phase-inte-
gral approximations used, while any other choice of a
gives a more complicated quantization condition in
which A depends on the order of approximation used.

We shall finally discuss the existence of energy values
satisfying the exact quantization condition (7’) and their
relation to the energy values determined from the cor-
responding approximate quantization condition (24).
When the energy E increases continuously and mono-
tonically from the value corresponding to the bottom of
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the potential well, the contour integral 3 [, ¢(z)dz in-
creases continuously and monotonically from approxi-
mately the value zero, as is easily realized from the
fact that the behavior of this integral is essentially de-
termined by its first and leading term, i.e.,

) Quoy¥)i dx. At the same time the expression
arg[F, (-,2)/F (+=,z)] changes continuously with E,
and when z is chosen conveniently it is seen that the
absolute value of this expression does not exceed the
smallest one of the two integrals u(—=,+ ) appearing
in (15) and (18). If this smallest value of p(—,+) is
small compared to unity, it is therefore reasonable to
assume that arg[F, (- «,z)/F, (+«,z}] depends only
slightly on E. Since, furthermore, the quantity
%qu(z)dz increases rather rapidly with E, we expect
the quantity 3f,q(z)dz —arg[F,, (- =,z); F, (+=,z)] to
increase monotonically with E. Since this quantity is
also a continuous function of E, we realize that for
every nonnegative integer s (not exceeding a certain
upper limit corresponding to the ionization limit) there
is precisely one value of the energy E for which the
exact quantization condition (7’) is fulfilled, and there
is an adjacent value of the energy E for which the
generalized quantal Bohr—Sommerfeld quantization
condition, i.e., the approximate quantization condition
(24) is fullfilled. (Close to the ionization limit there
may occur exceptional cases.) Since (7') is a necessary
and sufficient quantization condition, we conclude that
very close to each energy value which satisfies the
generalized quantal Bohr—Sommerfeld quantization
condition (24) there is actually a true energy eigenvalue.
The energy eigenvalues can therefore be approximately
determined by means of the approximate quantization
condition (24). It should be emphasized, however, that
this conclusion rests on the assumption that the ap-
propriate p integral is small compared to unity and only
slightly energy-dependent. A similar discussion can
obviously be carried through for the approximate
quantization condition (25).

APPENDIX

In this appendix we collect those formulas from Ref,
1 which we refer to in the text. The numbering here of
these formulas is the same as in Ref. 1., We are in-
debted to the referee for suggesting that we should add
this appendix in order to make the paper more easily
readable.

wz)= ["q()dg, (3.3)
i 1 exp{— 2w}

/ =3 .1
M(w)=3ie (_ expl2iw) -1 , (3.13)
)y (o) P, w), (3.18)

Fwg, w) Fig(wg, w) Foo(w,wy) = Fyylw,wy)
Fyy(wy,w) Foylwe, w) =~ Fy(w,wg)  Fy{w,wy) ’
(3.20)
F(zy,2¢) =F(2,,2() F(21,2¢), (3.27)
1

]F“(w,wo)_1|s2——M[exp{Mu}—1], (4. 3a)

lim Fy(z,z,) exists and is finite, (4.52)

along A
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lim Fyy(z,2) exists and is finite, (4.5b)
along A
F12(x1,xz)— lq xt) /lq(x )] exp{2 Im[w(x,)]

- 2i Re[w(x) [} Ffi (%1, ,), (5.9a)

| Py (g, %g) = 1]

[F“(xi,zo)—l|+|F11(x2,20)—1]+4u(x2,20£
1- I.P“(xz,zo)— 1l - ‘FZI(XZ)ZO)‘

< u +higher powers of ,
if 4 is small compared to 1, (6, 13a)

ay(@)=Fiy(z, +0) ay(+ ), (10. 8a)
ay(z)=Fyy(z, + ) ay(+ ), (10. 8b)
P(x) =ay(+ ) f,(x)[1 +0(p)] for x” <x <+,
if w=p(x, +=) is small compared to 1,
(10.12)
Fyp(=, +=)=0, (10.13)
(v, +) = 282 2%) (10. 14a)

F22(Z - °°) ’
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F22(+°° - w)__ZZE:f_)

s 10.14b
Fyy(z, + ) ( )

Fop(xy, %,) explé( f;" | g(x)| dx - 37)] is real, (10.17b)

/"‘ lg(x) | dx = (s +-§—)7r..arg_F_zz(Z_+_)
Fplz, =)’

x!

(10.20)
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The tensor virial theorem in quantum mechanics®

Leon Cohen

Hunter College of the City University, New York, New York 10021
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A quantum mechanical generalization of the scalar virial theorem is derived and specialized to atoms and
molecules in the Born-Oppenheimer approximation. The theorem is the quantum mechanical counterpart
to Chandrasekhar’s classical tensor virial theorem. The usual scalar virial equation follows by tensor

contraction. One possible application is the introduction of more than one scale factor in a trial
wavefunction. The scaling method proposed involves different stretchings for the different spatial

coordinates. This is in contrast to the standard method of using the scalar virial theorem where the
stretching is the same in all directions. An example is given where the introduction of multiple scale
factors and the imposition of the tensor virial theorem yields a better result than the usual procedure of

subjecting the wavefunction to a single scale transformation and imposing the scalar virial theorem.

I. INTRODUCTION

A classical mechanical generalization of the virial
theorem has been given by Chandrasekhar and has been
applied to the study of a number of problems.! Since the
quantities that are related in Chandrasekhar’s generali-
zation are tensors the result is called the tensor virial
theorem. Although the classical scalar virial theorem
has a very well-known quantum mechanical form, it
appears that no analogous quantum mechanical counter~
part has been given for the classical tensor virial
theorem, We shall do so below, and specialize the re-
sult to the case of atoms and molecules. We follow as
closely as possible Chandrasekhar’s notation.

Consider N mass points with Cartesian components
%;'®", The Greek superscripts in parenthesis refer to
the different particles and the Latin subscripts distin-
guish rectangular components, with analogous notation
for the momenta p, .

The Kkinetic energy and potential energy tensors are
defined, respectively, as

1 P (ot)P.(a)
Tw=52<—ﬁm&; , (1.1)
oV
Vij:E <Xi(a)_‘t_a u)>7 (1.2)
@ X

where V is the potential energy of the system.

The quantum mechanical tensor virial theorem for
stationary states which we prove below is

2Ty =V, (1.3)

Il. DERIVATION

There are a number of ways of deriving Eq. (1.3), but
perhaps the most straightforward is by using Heisen-
berg’s equation of motion, The derivation that is often
given for the scalar virial theorem? can be followed if
one considers the operator 3,x,%’p,'®’ rather than the
usual ¥;,x;%’p;'*’ that is used in deriving the scalar

dgupported by a grant from the City University Faculty Re-
search Award Program.
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virial theorem. For Hamiltonians of the form

H=2(p, ) +V,
ia
we have for stationary states
<[H, Exi(a)/)j(a)]> -0
o
=<E o, 2,21 +xt(a>[H,Pj(a)]}>-

Since

(2.1)

i
—ii ',

[H, xi(a)]:_ m

... oV
[H, Pj(“)]=lﬁw-
J

Equation (2. 1) becomes

—~ il ( (@) 53 tay OV
%<_Emﬂumm“—HM¢maﬁm ~0 2.2)
from which Eq. (1. 3) follows directly. This is the most
general form of the tensor virial theorem. The standard
scalar virial theorem follows from (1. 3) by taking the

trace.

We now specialize the theorem to the case of atoms
and molecules.

A. Atoms

For an N-electron atom the potential energy is

1 ’ 1
V==Zlim +6 L T 2.3
e?lx’le?glx’—x | (2.3)
Differentiating with respect to x,'*’, we have
v x ()
axj(a,=Ze2 lx(j"‘) 3
(a) 8)
- & Tty 2.4
¢ T ] 2.4
and that
% (a)x o)
Vu=Z€22 —T;ro‘zr"“r>
o
®© 1978 American Institute of Physics 1838



(2.5)

) '<(£L(a) - xl(B))(xj(m) - xl_(B))>

lx(a) - X(BF r&

B. Molecules

The appropriate form of the scalar virial theorem for
molecules in the Born-Oppenheimer approximation was
first considered by Slater.® He showed that, due to the
fact that nuclei are held fixed, an additional term must
be added to the standard mode of presenting the theorem.
Slater’s result has been extensively used in the study of
molecular structure and binding.

We now derive the analagous term for the tensor virial
theorem. Taking the electronic potential energy to be

Z e’

Ve=—L/ @y 1oy
€ %Ix"‘—x ]

(2.6)

where K denotes the nuclear coordinates, we have

erzxt(a)(xj(a) "xf(K))>

V=2
ij P ‘Xj(oz)_xj(K)|3

(
_ %QZZ' (xi(a) _ xi(B))(xj @) __ xj(B))>
g fx(a)_x(ﬁ)jii

(
,_E erz(x, a)_xi(K))(ﬁL'(a)"xj(K))>
< =@ B3

(
- %e22'<(xi ¥ = D))~ )
" ixhz)_x(ﬂ)ﬂ

Z e, B (x () _ 1 ()
+2< X —g T3 > (2.7)

The last term can be expressed as

V
-0 <x,(K) oV, D YIRS aEK ’
K Bx,- e axj

(2.8)

where E is the total electronic energy. This follows
from the Hellman—Feynman theorem. At the equilibri-
um configuration this term is zero.

Hence, for molecules in the Born—Oppenheimer
approximation

(@) Ky (@) K>
X - X, v —-X
V=2 erz( £ iy 1 )>
Ko

lx(m_xmls

_ lezz <(ii(a) _xi(a))(xj(a) _xj(s))
20 s ) ¢ B(3

_inm)__a_E(mo (2.9)
X 0x;
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I1l. CONCLUSION

In the classical case the scalar and tensor virial
theorems can be thought of as the first two moment
equations. Chandrasekhar has also considered moment
equations of higher order. In general they involve mo-
ments that mix position and velocity. The set of all mo-
ment equations is equivalent to the original equation
from which moments are taken. Of course, the advan-
tage of considering low order moment equations is that
very often the solution of a moment equation is a good
approximation to the exact equation being considered,

In the quantum mechanical case an interesting problem
arises if one considers generalizing the classical higher
order moment equations. As mentioned above higher
order moments mix position and velocity, but there is
no unique way of writing the quantum mechanical
counterpart to operators which mix position and mo-
mentum, Indeed it has been shown that there are an
infinite numer of so-called correspondence rules which
allow the writing of quantum mechanical Hermitian
operators from their classical counterparts.? It may
be that higher order moment equations generated via
any correspondence rule would be equivalent, but that is
not clear.

One possible use of the tensor virial theorem derived
above is to use it as a means of ascertaining the accu-
racy of approximate wavefunctions. The possibility of
using the scalar virial theorem for that purpose was
pointed out by Slater, * but Lowdin® has shown that any
approximate molecular wavefunction can always be made
by to satisfy the scalar virial theorem by simple scaling
of the coordinates, This may also be true of the tensor
virial theorem but the scaling in that case would clearly
not be so simple. One possible measure of the accuracy
of a wavefunction that could be used is

Tr{2T ;= VP . (3.1)

It would be of interest to take a particular molecule and
calculate the guantity given by expression (3.1) for a
variety of molecular wave functions to determine whether
indeed there is a strong correlation with the accuracy

of the wavefunction, H, would be a good candidate as
there are a great number of approximate wave functions
for it.

In certain cases it may be possible to use the tensor
virial theorem fo introduce a set of different scale fac-
tors to improve a given approximate wave function. The
scalar virial theorem allows the introduction of only
one scale factor. (Optimizing the energy with respect to
the scale factor is equivalent to satisfying the scalar
virial theorem and we suspect the same may be true for
the tensor virial theorem.)

One may consider the standard scaling method® as
transforming the coordinates via

r—1lr, (3.2)

where 7 is the constant scale factor and I the unit
matrix. This is equivalent to stretching each coordinate
by the same relative amount, But the most general
transformation compatable with the tensor virial theorem
is
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(3.3)

where A is a symmetric matrix. The diagonal terms of
A are in general not equal and hence the stretching
given by Eq. (3.3) can be different for each Cartesian
coordinate. Furthermore, if the off diagonal terms are
not zero the transformation will involve stretchings and
rotations.

r— Ar,

We give an example where the usual procedure of
introducing a single scale factor and imposing the
scalar virial theorem does not yield as good a result
as the introduction of multiple scale factors and the
imposition of the tensor virial theorem. Consider the
two-dimensional harmonic oscillator with frequencies
w, and w,. Suppose we take a wavefunction of the
form

9x,9) = ~tre™t 2t +y?) (3.4)
and introduce a single scale factor as in the standard
procedure’

xX=nx Y. (3.5)
Imposing the scalar virial theorem yields
2,2 2174
news: +w
n= [%2‘ —1—2—L] (3.6)
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with a corresponding energy

wli+w?

E() =ﬁ("—2-——¥—>”2 . (3.7

This is the best that can be had with one scale factor.
On the other hand if we introduce two scale factors
A=TX Y Y- (3.8)
A straightforward calculation shows that the imposition
of the tensor virial theorem yields

1/2 1/2
w muw
Ty = <%'Z:—x> oy = (—ﬁl) (3.9)
with a corresponding energy
E (N, 1) =3Taw, + 37w, (3.10)

which is the correct energy.

13, Chandrasekhar, Ellipsoidal Figures of Equilibvium (Yale
University Press, New Haven, 1969); and references therein.
’F. Merzbacher, Quantum Mechanics (Wiley, New York,
1961), pp. 162—3.

3J.C. Slater, J. Chem. Phys. 1, 687 (1933),

41, Cohen, J. Math, Phys. 7, 781, (1966); 17, 597 (1970).
5P,0. Léwdin, J. Molec. Spectr. 3, 46 (1959).

Leon Cohen 1840



Quantum theory and Hilbert space
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Two theorems are proven which show that any orthomodular partially ordered set (hence, in particular,
the orthologic of questions on a physical system) can be embedded in the lattice of closed subspaces of a
Hilbert space in such a way that the standard trace formula of quantum theory can be used to calculate
all probabilities. Possible conclusions from these results and from the existence of counterexamples to

stronger conjectures are then discussed.

1. INTRODUCTION

Practically since the beginning of quantum theory,
the question of the extent to which the Hilbert space
language of the theory could be considered an adequate
mathematical language for the study of arbitrary phy-
sical systems has been widely discussed. The search
for counterexamples to any general claims has been
conducted with as much diligence as, and somewhat
more success than, the search for proofs of general
validity of the language. The mathematical context of
the problem can be described as the theory of Hilbert
extensions of orthomodular partially ordered sets
(orthoposets) and the probability measures (states) that
can exist on such sets. General background information
and any definitions not explicitly given in this paper can
be found in our first few references.!~?

There seems to be general agreement that the lan-
guage of orthoposets!® and their states is capable of
dealing with arbitrary physical situations, whether of
classical, modern or some as yet undiscovered type.
This agreement follows rather directly from the rea-
sonable requirement of Einstein and Heisenberg that a
theory, at least initially, stay as close as possible to
the actual measurements made in laboratories. As

currently applied, the requirement implies the structure

of an orthoposet for the simple yes— no measurements
in terms of which all observables can be expressed,
with the ordering, orthocomplementation and ortho-
gonality relations determined by physically measured
probabilities. The area of disagreement involves the
thorny problems of the possibility, necessity and/or
usefulness of realizing the physical orthoposets and
states in terms of orthoposets isomorphic to the lat-
tices of closed subspaces {or, equivalently, projection
operators) of Hilbert space. It is in this context that
examples abound but counterexamples more abound.

Invariably in work on these problems, Boolean ex-
tensions of orthoposets—the main rivals of Hilbert
extensions—enter in, if only as tools for constructing
examples and counterexamples. These are realizations
of orthoposets in terms of Boolean algebras (ortho-
posets isomorphic to lattices of subsets of a set).
Zierler and Schlessinger® have studied what we call
Boolean order preserving extensions (O-extensions),
and by constructing for each orthoposet @ a unique
minimal Boolean O-extension, have demonstrated the
existence of such extensions for arbitrary orthoposets.
We will refer to their construction as the ZS-extension
of @. Using this construction, they show that for a
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wide class of orthoposets (including those isomorphic
to the set of projection operators on a Hilbert space)
there cannot exist any Boolean O-extensions that also
preserve all probability measures.

The situation for Hilbert order preserving extensions
is no better. Greechie and Miller* have shown that the
class of all orthoposets can be divided into three mu-
tually exclusive subclasses: Those having no states,
exactly one state, or an infinity of states, and they
have constructed simple examples of each type. Then
Wright® has pointed out that for a class of examples in
the last category there exist states that cannot carry
over to any Hilbert O-extension.

Since, for physical purposes, preservation of prob-
ability measures seems at least of equal importance
with preservation of ordering, the present author was
led to ask if there might exist measure preserving ex-
tensions (M-extensions) for arbitrary orthoposets,
which do not completely preserve the ordering. One
of the purposes of this paper is to give an affirmative
answer to this question by constructing Boolean M~
extensions for every orthoposet. Using these, it is then
possible to construct Hilbert M-extensions, and finally,
what we call QM-extensions, in which computation of
probability can be carried out according to the standard
quantum mechanical trace formula.

2. PRELIMINARY NOTIONS

After a brief review of the notion of an orthoposet
to establish notation, we will give only those definitions
not current in the literature.

D1. For @ a partially ordered set {poset) and SC @,
we write A S and v S for the greatest lower and least
upper bound elements for S when they exist (also re-
ferred to as the meef and join of S), with the standard
alternative notations pA ¢q, v, q,, etc., for pairs and
sequences. By an orthocomplemented poset we mean a
poset @ with a greatest and least element, 1 and 0, and
an operation g— ¢’ {orthocomplementation) such that:

Mg =q;

@) g<p=p'<q';

B)grnq' =0;qvq'=1.
Two elements p,q in an orthocomplemented poset will
be said to be orthogonal (p Lg) if p<q’, which, by (1)

and (2), is also equivalent to ¢ < p’. Then an ortho-
modulay poset {or simply an orthoposet) can de defined
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as an orthocomplemented poset @ which satisfies:
@ VYp,qeQ, plg=pvqeq;
GV pac@,p<sqg=q=pVv (pV ).

An orthoposet will be called an ortholattice if condi-
tion (4) is generalized to

@)V p,qeQ,pvgeq. O

Since it is e